CHHE E(LEEIC L AAE S e ST 2 S O ORIOHISE

K4 RUCKEA

Representation Schemes for Evolutionary Automatic Programming

We propose a new representation scheme for Genetic Programming (GP). It is a recurrent
network consisting of functions (recurrent tree network, RTN). GP is a type of evolutionary
computing (EC). EC is a framework of automatic optimization or design.

Features of EC are:

e Representation scheme for solution candidates and variation operators for them.
e Fitness function that shows a quality of the solution candidate.
e Selection method that selects prospective solution candidates from a set of them.

Usually, these features are defined independently. Although it is interesting to rethink this
model completely, we reconsider only the representation scheme for GP.

We use GP to generate a program automatically. The program is represented by RTN. RTN
can represent any algorithms, in other words, Turing-complete. Thus, a user of RT'N need not
worry about whether a solution of a given problem can be described by RTN. On the other
hand, the expressiveness of solution candidates of standard GP, which is the most popular GP,
is strongly restricted. A solution candidate of standard GP is represented by a single parse tree.
The parse tree consists of terminals and non-terminals. If all non-terminals are pure functions
and we treat an evaluated value of the parse tree as an output (or behavior) of the solution
candidate, the repertoire of this representation is smaller than the one of finite state machine.

This does not matter if we know that the restricted expressiveness is sufficient to describe
the solution of a given problem in advance of evolutionary computation. However, in case that
we do not know that and the search should fail, it will be impossible to find out whether it is
attributable to evolutionary computing or the representation scheme. For example, suppose we
try to generate a classifier for the language {wwlw € {0,1}+}. If we use a representation whose
repertoire is the same as one of the pushdown automaton, then we will never succeed, because

it is proved that any pushdown automaton cannot decide this language.

One conceivable approach is to introduce an ideally infinite indexed memory and non-terminals
to access to it. It is proved that if the solution candidate is represented by a parse tree consisting
of these non-terminals and we can repeat the evaluation of the parse tree until the data stored
in the memory meets a halting condition, then the expressiveness is equivalent to the one of a
Turing machine, i.e. Turing-complete.

We propose another representation scheme, RTN. It is a natural extension of standard GP.
Standard GP uses a single parse tree to represent a solution candidate. On the other hand,
RTN is a recurrent network consisting of plural nodes. Each node consists of a value and a pure
function represented by a parse tree. The parse tree consists of non-terminals and terminals.
Special non-terminals are not needed. Terminal set consists of four variables and constants. In
case of standard GP, the input data bind variables. On the other hand, they bind the values of
the RTN nodes.

This is an example of RTN consisting of two nodes. The functions of each node are

#1: (c— Pld)/2,
#2 : Plald,

where P is a procedure which returns a remainder of its argument divided by 2. The function
has at most four parameters, i.e. a, b, ¢, and d. These parameters are bound to the value of
nodes. In this case, the binding rule is expressed as follows: Links of #1 and #2 are {*,*,1,*}
and {1,%,*,2}, respectively. The third parameter of #1, i.e. ¢ and the first parameter of #2,
i.e. a are bound to the value of #1, because both the third link of #1 and the first link of #2
are 1. The fourth parameter of #2, i.e. d is bound to the value of #2, because the fourth link
of #2 is 2.

The program is executed according to the discrete time steps. Define the function and the
value of the #n at time ¢ as f,, and v(n,t), respectively, the number of parameters as k,, and
let 4-th parameter be bound to the value of #1,;. The value at ¢+ 1 will be

’U(’I"I,,t + 1) = fn(v(ln,l)t)a e >v(ln,l€nat))'

Suppose the value of #1 is bound to the input data and the value of #2 is 1 at ¢ = 0. For
example, when the input data is a binary digit 1011, the transition of RTN will be

Value of #1 1011 101 10 1 0,
Value of #2 1 1 1 0 0.

When the value of #1 becomes 0, the value of #2 is 0 if and only if the inputted binary digit
contains 0.

It is straightforward to prove that RTN can simulate any Turing machine, in other words,
RTN can represent any algorithms. We give the proof in this paper.

We use RTN to generate language classifiers. These are the tasks that GP has failed to
solve. GP using RTN succeeds to solve them. We also apply the representation scheme using
indexed memory to these tasks. However, it does not succeed. This comparison implies that
our approach is effective and promising.

Various representations for GP have been proposed so far. We discuss differences between
RTN and other representation scheme. We also discuss the criteria used in comparing various
approaches. For example, No Free Lunch Theorem does not matter.

B~ 1 77 X 7 (Genetic programming, GP) D7z DH LWRIUERZRET D, B
DOEFE R F v FU—7 (recurrent tree network, RTN) Tdb 5, GP 1Lt (evolutionary
computing, EC) O—F T, a7 7 20 HBAERKIZHNLND, ECiTHEBINREESCT A
VDT VL—=LU—2ThD,

EC IR DER THREfHT 5 2 L3 T 5,

o fEFEAT DORBIE N L fRGEAT 2 WET DT b DAL —F
o MG OO'E & EFE T DG B
o fRMEAEDES DTN BLAELR S D E RO 48R ik

W 2D OBBIIIMSICEREND, ZOLIRETNVEEREZ ZETOGIKENZ & Tl
HDHN, ZIZTIEGP Db ORBITERD L LT R LT D,

GP ZFIHT B0, bNDOIUIRIN ZHWCT 0/ 7 22K T 5, RINHMEEOT /L=
VARLERBFTED, 2F0Fa—) IR Th5, £0=H, RTN OFIHE LR
DR RIN TRILATRED E 5 & LT 2 MEIER N, TO—FH T, bHFk LT\ HIEYE
72 GPIZRB Wik, a7 7 AMIHE—OIRA TR I, ZORITMS KRS LIzb D
W25 TW5B, Bl ziE, HESURZERERR S 2 IERIR / — ROMIBIEL©, MSURZFHN L 7o f k& 7
07T AOHMF (FIFEEY) ERRTRLIE, ZORBO L/ A— R —THRIREBER O b
DEY /IS 2B,

FIRESNERENTHE X bNEBBEOME TR D IE oD Z &%, FHRICESL
TH-TWBERBIE, ZOZ MBI R LR, LrLaEnb, b LIO+atEE2mbRn
T, LOHBRICKRBL75E, RIROFRRIELFHEICSH D 0NRBATERICH L2002 d T
LT ERY, Bl {wwjw e {0,1}x} EWVWIEFREELHUET DT 0 ST hEAERLINE LK
9 bLLA—= M) =BT v af vy A — b bR UERBRE AW 613 BRE
IER LTI LA, Py vaf vy -4 — b b CRIOFREEHETCERNWI LIRS N
TWBENLTHD,

EZONAHMYREL LT, HANCITEROZMAE AT EZNICT 7 BAT H2DDIEK
W — FEHEATDELENILORD D, TOX D RIERE — Db 7232 D4 30K T O5A 2 3
L., BrED AT Y OEIPME IS Z -9 F TSRO 2 0 B4R 61F, ZENHET =2—
Vo g e e bAEDFENF2—) U IRBEIIRDBIENRINTND,

I 2B OEFZR, RIN 282275, RINIIELERR GP O BRRILRETH 5, EHERNR
GP IHRDOFHR L L CTH—DfSIAE A5, —F, RIN EEURHRR Y NV —2 Th D, X
N — 213D) — R TR SN, a0/ — RidE & SORCRE SN 2 MBI Fo,
HESCAR 2R3 2 DR R RN) — RGN, Kl — Fid 4 SO & EHOWTi
NTHD, HEHERZR GPIZRBW L, 7077 A~DATNIELITRASN DA RIN IZBWT
X/ — FOEIZRAS LD,

RTN O#l%&RT, 2250/ — 1575 RIN Th b, &/ — FBFOBEIL.

##1: (c— P[d])/2,
#2 : Plald,

Thd, ZZTPIE2TESERVEERT LI RPHEEXTHD, BEBIIRKTLoD5$ q, b, ¢
d&xE-o, ZhoD3ICE/ — FOMEMRAZND, RADLHIE, #LITOWTHE{**1,*},
H2UIZOVTIE{1,¥*2} DX I ICKBLEN D, #1 D3BHEDOEHRLH#2 D 1FHOERKITL BIC
1 ThHIND, #1 DEIEEDOEY c L#2DE 1 EHOEY o lTiTH#1 OEPRASND, #2
DAFBAOERIT2 THIND, #2DA4FHOEHOEY dITIFH#2 DENRASHD,

3

70 7T MIERE TR Z A b AT TS TEITEN D, /— Nfkn BFFOBEEKE f,. K
At COEE v(n,t) &T D, %@mﬁﬁﬁ@ﬁwﬁ%mﬁﬂhi%ﬁ@%ﬁmm#m@ﬁﬁﬁ
AENDbD LT D, KAt + 1ICBT D#n OfEIX

’U(’n,t+1) fn((nla), av(ln,knat))

LB, Tl T A~DAINEH OFEICRASIL, #2OfEHITt =018V T1 &35, il L
T, Tl bh~DANTN2HEE 1011 72 o724 75, RTN OFERBIIRD L H 225,

#1 DfE 1011 101 10 1 0,
#2 DIE 1 1 1 0 0.

#H1 DN 0127 oTe b &, Tl T L~DATNN 0 %EEALTWIEGEIZR S TH2 OED 01
A ,
RIN BEBEDF a—J v vk Ialb—hT&5H28, OFY RINBMEEDOT VA

VALERBCEXDZ LIMHEIIRTZENTE S, GEIIAXFTEZ 2,

JEABIE LT, RTN ZHvWe GPIC L 2 5B HIEEE O BB AERK RS D, ZIUIIERD GP
DR L CWZRETH D, RIN AV GP i3 Z OFfEICATh T 5, ER & LT, FHHuf
EAEYEAVE GP ThbZOMREERADR, IR LR, o &b, —RINRE
W7o o7k % RIN OFMERHIFRFE D,

GP D= ORBIFERITMIZ L EFSERLOPEREN TS, TbH & RTN OEWID
WThEMT 5, T, BOEERTOIBRICHANVDIEBILONWTHELET S, 21, No Free
Lunch Theorem (ZHEZE CTiEWVWZ & Z1§2107J>

