論文の内容の要旨

論文題目 Development of a Novel Chiral Ligand: Linked-BINOL and Mechanistic Studies of Catalysis with Linked-BINOL (新規不斉配位子 linked-BINOL の開発と触媒反応 メカニズムの解析)

氏名 松 永 茂 樹

1:新規不斉配位子 linked-BINOL の開発と Ga-Li-linked-BINOL 錯体への応用

柴崎研究室ではヘテロバイメタリック触媒と総称される不斉触媒の開発を行ってきた。こ れらの金属錯体の構造上の特徴の一つとして2ないし3分子の BINOL 不斉配位子を含む点が 挙げられ、複数の不斉配位子により構築される不斉環境が不斉誘導に重要な役割を果たしてい る。しかしながら、一方で、複数の不斉配位子を必要とするが故に錯体の安定性等に問題が生 じる場合があった。私は新規不斉配位子を設計し、錯体の安定化を目指すべく研究に着手した。

錯体安定化を指向した配位子設計概念を Figure 1 に示した。2分子の BINOL ユニットを 適切なリンカーにより連結することで錯体の安定化を目指すこととした。リンカー部分に関し て種々検討の結果、新規酸素原子含有型 linked-BINOL が有効であることを見い出した。本新 規不斉配位子より調製した Ga-Li-linked-BINOL を用いたエポキシド開環反応においては若干の 反応性の低下が観測されたものの、触媒量を 10 mol %に減じても触媒の分解が全く見られなか

った (Scheme 1)。一方、Ga-Li-(BINOL)₂を用いる場合には求核剤との配位子交換による触媒の 分解が時間とともに進行するため、触媒量 10 mol %では極めて低い化学収率にとどまってしま い、20 mol %以上の触媒を使用しても化学収率は中程度である。この結果は、新規 linked-BINOL 配位子により錯体の安定化が達成されたことを示唆している。次に linked-BINOL により構築 される不斉環境に関する 情報を得るべく Ga-Lilinked-BINOL の構造解析 を行った。NMR および LDI-TOF MS の結果から C_2 対称性を有するモノ マー錯体であることが示 唆された。さらに Ga ア ルコキシドから調製した LiCl を含まない Ga-Lilinked-BINOL 錯体を用い ることで X 線結晶構造 解析に成功した (Figure 2)。 Scheme 1. Epoxide Opening Reaction with (R,R)-Ga-Li-linked-BINOL

Figure 2. X-ray structure of LiCl free (R,R)-Ga-Li-linked-BINOL

2: Et₂Zn/linked-BINOL 錯体のメカニズム解析

私の開発した linked-BINOL 配位子は、共同実験者により各種金属錯体へと適用可能である ことが明らかとなりつつある。例えば、La-linked-BINOL 錯体や La-Zn-linked-BINOL は触媒的 不斉マイケル反応に対して有効であった。また、Et₂Zn/linked-BINOL=2/1 錯体はヒドロキシケ トンを求核剤とする直接的触媒的不斉アルドール反応 (Scheme 2) および直接的触媒的不斉マ イケル反応に対して有効であった。私は、linked-BINOL 配位子を活用した触媒的不斉反応を展 開していく上で、反応メカニズムの解析は合理性の高い反応改良、および新規反応への展開に 必要不可欠であると考え、Et₂Zn/linked-BINOL 錯体によるアルドール反応を対象としたメカニ

ズム解析研究に着手した。

Et₂Zn/linked-BINOL = 2/1錯体によるアルドール反応 において、ケトンの当量、 触媒量、基質適用範囲の3 点を改善すべき課題として 設定し、メカニズム解析に より課題克服に向けての手

Scheme 2. $Et_2Zn/linked$ -BINOL = 2/1 Complex: Direct Aldol Reaction.

がかりを探すこととした。触媒構造に関して X 線結晶構造解析、NMR、CSI-MS 解析を行った 結果、Figure 3 に示すような Zn₃(linked-binol)₂ という構造を有することが分かった。さらに、エ タンガス発生の定量実験により系中には未反応の Et₂Zn が 0.5 モル当量残っていることが確認 された。反応速度実験により、この小過剰の Et₂Zn は不斉収率を維持したまま、反応速度の向 上に寄与していることが分かった。また、各種触媒量を変化させた場合の反応速度を追跡した 結果、興味深いことに触媒量を 10 mol %以上に増やしていくと反応速度が徐々に低下していく 傾向が見られた。この結果は触媒に対してある一定量以上のケトンの存在が反応の進行に必要 であることを示唆している。事実、触媒に対してちょうど 1 モル当量のケトンを使用した場合 にはアルドール体は全く生成しなかった。過剰量のケトン存在下における触媒構造の変化を追 うべく CSI-MS による観測を行った (Figure 4)。その結果、触媒のみを測定した場合には Zn₃(linked-binol)₂に相当する m/z=1418.9 のピークが主ピークであったが、ケトンを 10 当量添加 することでスペクトルに大きな変化が観測された。すなわち、Zn₃(linked-binol)₂に相当するピ ークはほぼ消失

し、 Zn₇(linked-BINOL)₃(ketone)₄ に相当するピー クが観測され、 オリゴマー種の 生成が示唆され た。最後に反応 速度論解析を行 った結果、本反 応はケトンと触 媒に対しては1 次の依存性を示 し、アルデヒド に対しては0次 であることが分 かった。

次にメカニ ズム解析を基盤 に、反応の改良 に取り組んだ。 反応改良のター ゲットとなる段 階は生成物の解

Figure 3. X-ray structure of Et₂Zn/linked-BINOL complex.

離と触媒再生のステップであることが予想された。戦略としては小過剰の Zn が反応加速効果 をもつこと、また、ケトンの当量については触媒との相対量の問題と考えること、の2点が重 要である。反応条件の最適化の結果、Et₂Zn/linked-BINOL=4/1 の比率で反応を行い、さらに添 加剤として活性化した MS 3A を加えることで反応速度の改善、ケトン当量の低減化(1.1 当量)、 触媒量の低減(0.1 mol %) に成功した (Scheme 3)。また本反応は 50 g を超えるスケールでも 容易に行えることも分かった。アルドール反応に対して最適化した反応条件はマイケル反応に 対しても極めて有効であり触媒量を最高 0.01 mol %にまで低減化することに成功した (Scheme 3)。また、新規 Et₂Zn/linked-BINOL=4/1-MS 3A 触媒系はヒドロキシプロピオフェノンを求核剤 とする反応にも有効であり4置換炭素を有する生成物を最高 96% ee にて得ることに成功した (Scheme 4)。また、本反応ではラセミ体のケトンを使用したが、興味深いことに回収されたケ トンは光学活性体であった。この知見を基に光学的にほぼ純粋な(S)-体のケトンを原料として 反応を行った場合には、(*R*,*R*)-触媒では反応が全く進行せず、(*S*,*S*)-触媒では円滑に反応が進行 した。この結果は触媒のケトンのα位のヒドロキシ基の立体に対する高い認識能を示唆してお り、特に触媒的不斉マイケル反応において生成物阻害を受けることなく触媒量を 0.01 mol %に まで低減化できた事実を支持するものである。ヒドロキシプロピオフェノンを求核剤としたア ルドール反応も新規 Et₂Zn/linked-BINOL=4/1-MS 3A 触媒系を適用することで、ジアステレオ 選択性に問題点を残すものの、生成物を効率よく得ることができた (Scheme 4)。この場合には、 興味深いことに linked-BINOL のリンカー中のヘテロ元素を酸素から硫黄へとかえた sulfurlinked-BINOL も有効であり、ジアステレオ選択性が逆転するということを見い出した (Scheme 4)。

Scheme 3. Direct Aldol and Michael Reaction with Optimized $Et_2Zn/linked-BINOL = 4/1$ with MS 4A System.

Scheme 4. Direct Aldol and Michael Reaction with 2-Hydroxy-2'methoxy-propiophenone.

