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Thesis Abstract
Fluorescence Assay of Ligands for Nuclear Receptors in Living Cells

Mubhammad Awais

Nuclear receptors (NRs) constitute a large family of ligand-activated transcription factors that
regulate the expression of specific target genes involved in embryonic development, maintenance
of differentiated cellular phenotypes, metabolism and cell death. The members of NRs family
include steroid receptors such as estrogen, androgen, progesterone, glucocorticoid receptors (ER,
AR, PR, GR); thyroid, retinoic X and retinoic acid receptors; and orphan receptors e.g. peroxisome
proliferator-activated receptor (PPAR). Pharmaceutical NR agonists and antagonists, such as
tamoxifen for ER (targeted in breast cancer), flutamide for AR (targeted in prostate cancer),
thiazolidinediones for PPARy (targeted in type II diabetes) or dexamethasone for GR (targeted in
inflammatory diseases), are among the most commonly used drugs. Coactivator proteins are
required by ligand bound-NRs for efficient transcriptional regulation. Ligand binding to a receptor
induces a distinct conformational change in the ligand binding domain (LBD) that facilitates or
precludes coactivator interaction with the receptor. The sequence alignment and X-ray
crystallographic studies suggest that all members of NR family share similar folding of their LBDs.
An agonist binding to a NR induces a conformational change in the LBD that exposes a
coactivator-docking site on the LBD surface. The subsequent recruitment of coactivator to the NR
stimulates the transcriptional activity. In contrast, the conformational change in a NR LBD induced
by an antagonist blocks the coactivator recruitment. A coactivator protein interacts with a receptor

via a conserved hydrophobic LXXLL motif (L = leucine, X = any amino acid).

In the present study, genetically encoded fluorescent indicators for ER, AR, and PPARy were
developed for screening of their endo- and exogenous ligands in live cells.

Principle. The principle is shown schematically in Figure 1. LBD of a NR was connected with a
coactivator peptide that includes the LXXLL motif via a flexible linker. This fusio/n protein was
sandwiched between cyan (a donor) and yellow (an acceptor) fluorescent proteins (CFP and YFP,
respectively) in such a way that the excited and emission spectra of these fluorescent units are

suitable for fluorescence resonance-energy transfer (FRET) from CFP to YFP. An agonist binding

promotes coactivator recruitment by inducing a conformational change in the LBD that allows
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interaction. Thus, the Figure 1. Principle of the SCCoR indicator for NRs (ER, AR, and PPARy). The
FRET does not occur ligand-induced positioning of helix 12 of LLBD palys an important role for

Lo coactivator recruitment.
The indicators

developed for ER, AR and PPARy were named SCCoR (Single Cell-Coactivator Recruitment), and
the assay was called as fluorescence SCCoR assay. Monitoring real-time ligand-induced
conformational changes in the receptor LBD to recruit coactivator allowed screening of natural and

synthetic ligands (agonists and antagonists) for these receptor in single living cells by FRET

microscopy.
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Figure 2. (a). Pseudocolor images of the CFP/YFP emission ratio

Upon stimulation with an agonist,

17B-estradiol (E2), a decrease in

upon E2 stimulation. (b) Time course of the FRET response upon

addition of E2 and ICI 182, 780 to CHO-K1 cells, respectively.



the CFP/YFP emission ratio (increase in the FRET) was observed along with the a blue shift of the

pseudocolor in the cells images as shown in Figure 2, but no change was observed with the addition

of an antagonist, ICI 182,780, under otherwise
identical experimental conditions. Most of the
endocrine disrupting chemicals (EDCs) have high
binding affinity for ER. Screening of E2 and
several EDCs (diethylstilbestrol, DES; genistein,
Gen; nonylphenol, NP; and bisphenol A, Bis-A)
was performed in a dose-dependent fashion as
shown in Figure 3. The results are as follows in

their decreasing order: E2 > DES > Gen > NP >

Bis-A.

In the case of breast cancer management, the

activity of natural estrogen E2 is inhibited by

using the  anti-estrogens (ER-antagonist
drugs).The ability of estrogen antagonists such as
ICI 182, 780 and 4-hydroxytamoxifen (OHT)
to inhibit E2 activity was also evaluated. The
activity of E2 was inhibited completely in the
presence of ICI 182,780 or OHT. A 100-fold

higher concentration of E2 was required to

displace ICT 182, 780 or OHT in order to restore its

activity (Figure 4).
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Figure 3. Dose-response curves for agonists (E2,

DES, Gen, NP, and Bis-A).
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Figure 4. The ability of antagonists to inhibit the

activity of E2.

Androgens play a critical role not only in the physiological development of prostate but also in the

genesis of prostate cancer by interacting with AR. For constructing AR-SCCoR, AR LBD was

connected with Tip-60 coactivator peptide through a flexible linker. The resulted fusion protein was

connected with CFP and YFP for FRET microscopy. Androgens such as DHT or testosterone



promoted coactivator recruitment to the AR and
induced FRET. But antiandrogens such as flutamide or
procymidone were unable to promote FRET.
Androgens promoted FRET in a dose- dependent
manner as shown in Figure 5. In the case of prostate
cancer management, the natural androgen testosterone

is replaced from the ligand binding pocket of AR,
which is done by using the antiandrogen drugs such as
flutamide. The ability of flutamide to displace the
testosterone was evaluated by using SCCoR indicator.

The result is shown in Figure 6.

SCCoR for PPARyY

PPARy is a molecular target for the treatment of
several diseases such as cancer, diabetes, asthma, and
inflammation. We extended our SCCoR approach to
develop an indicator for PPARy for the screening of
endo- and exogenous ligands (drugs for type II diabetes)
for this receptor. The response curves for different
PPARY ligands were obtained as shown in Figure 7.

In conclusion, we have devised a versatile fluorescence

assay for screening and characterization of endo- and

exogenous ligands for NRs in living cells. The high
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Figure 5. Dose-response curves for AR agonists.
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Figure 6. Testosterone induced ratio
change was reversed back upon addition
of an antiandrogen flutamide.
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sensitivity of the present indicators made it possible to distinguish between strong and weak

agonists in a dose-dependent fashion. Discrimination of agonists from antagonists was efficiently

achieved using the present study. This fluorescence assay for ligands in a high-throughput manner

can be used for classifying unknown ligands as agonists, antagonists or partial agonists/antagonists

for NRs. The approach described here may be promising in the development and screening of

potential drugs against breast cancer, prostate cancer, inflammation, and diabetes.





