論文内容の要旨

Structures and Properties of Metal Ion-containing Ionic Liquids and Immobilized

Ionic Liquids, and Their Applications to Catalytic Organic Reactions

金属イオンを含むイオン液体及び固定化イオン液体の構造と性質 及び有機合成触媒反応への応用

氏名仲,崇民

[背景] イオン液体はカチオンとアニオンから成る液体(溶融塩)であるが、近年、有 機アニオンを構成要素とし、低融点、蒸気圧が低い、高い電気伝導度を示す、室温近傍で の有機溶融塩が注目されている。 このような性質は、従来から電気化学に利用されてい るが、近年、有機合成反応において環境にやさしい溶媒として使用する、あるいは、Biphasic 触媒反応において、触媒の固定相として使用する研究が注目されている. 触媒反応におい て、活性種を安定化することで、従来の触媒の活性と選択性を向上でき、或は、新たな活 性種を形成し、新しい触媒反応を開発することも可能である。 イオン液体の性質と金属 イオンの触媒的性質を合わせ持つ、金属イオンを含むイオン液体として、近年、よく研究 されているのは、室温イオン液体 Haloaluminate である。 このような イオン液体は、融点が低くて、酸性も調整できるが、酸素と水に対して、不安定であり、 純度向上も難しく、触媒反応への応用は限定されている。以上より、新しい金属イオンを 含むイオン液体の開発が望まれる。

この背景に基づいて、本研究では、金属イオンを含む、触媒活性を持つ、融点が低い、 新しいイオン液体を開発することを目的とした.更に、分離、回収、再使用にすぐれ、工 業的応用との関連性から、固定化イオン液体も開発した。 合成したイオン液体を用いて、 Suzuki 反応とKharasch反応の触媒作用への適用を行った。

[金属イオンを含むイオン液体の調製、性質と構造]

新しいイオン液体はScheme 1 に示すように、1 - Butyl-3-Methylimidazolium chloride ([BMI]Cl)と金属の塩化物から合成した。合成したイオン液体([BMI]₂MCl₄(M= Sn、Cu、 Zn、Ni、Mn、Co、Pt、Fe、Cr)と[BMI]₂ZrCl₆で略す)は全てAcetonitrileから再結晶した 後、組成と構造は、元素分析、¹H NMR、¹³C NMR、EXAFS、単結晶X-Ray構造解析、UV/Vis で決定した。図1は合成したイオン液体のイオン伝導率の温度依存性を示す。温度の上昇 とともに、伝導率も上昇する。Snの伝導率は他のものより、2倍以上高い。これは以下に 示すように[BMI]₂SnCl₄の特別な構造と関係があると思われる。 融点における伝導率は大 体 0.1 S/mぐらいである。融点はアニオンの構造できまると思う。アニオンの形状、対称 性と融点はそれぞれ、SnCl₄²⁻: pseudotrigonal bipyramidal, C_{2v}, 278 K; CuCl₄²⁻: flattened tetrahedron, D_{2d}, 296 K; NiCl₄²⁻: distorted tetrahedron, T_d, 327 K; MCl₄²⁻ (M = Co, Mn, Zn, Fe, Cr): tetrahedron, T_d, ca. 333 K; PtCl₄²⁻: square planar, D_{4h}, 372 K; ZrCl₆²⁻: octahedron, O_h, 391 K である。 熱の安定性はTGAで検討し,熱分解温度以下で は、質量減少は認められなかった。熱分解温度はそれぞれ、[BMI]CI(488 K); [BMI]₂PtCI₄ (155); [BMI]₂CuCl₄ (200); [BMI]₂PdCl₄ (210); [BMI]₂SnCl₄ (215); [BMI]₂NiCl₄ (265); [BMI]₂FeCl₄ (265); [BMI]₂ZnCl₄ (270); [BMI]₂MnCl₄ (270); [BMI]₂CoCl₄ (275); [BMI]₂ZrCl₆ (275)である。熱分解機構についても検討した。以上により、合成したソルトはイオン液体 の基本的な性質を持っていることがわかった。 [BMI]2MCI4(M=Cu,Ni,Sn,Pt)と[BMI]2ZrCI4 のORTEP図を図2に示す。[BMI]₂MCI₄(M=Co,Zn,Fe,Mn)のORTEP図は[BMI]₂CuCI₄とほぼ同様 である。一部の構造データはTable1に示す。[BMI]₂CuCl₄の非対称単位には、二つの互いに 平行なBMIカチオンとJahn Teller 効果により、平面型に近づいているテトラヘドラル CuCl₄²⁻が含まれる。[BMI]₂NiCl₄の非対称単位には、二つのブチル基が互いに垂直に配向し ているBMIカチオンと少し歪んでいるテトラヘドラル型のNiCl₄²⁻が含まれる。SnCl₄²⁻のSn - CI距離はそれぞれ: Sn - CI(1), 2.537(3); Sn - CI(2), 2.483(4); Sn - CI(3), 2.686(4); Sn - Cl(4), 2.864(4)である。水素結合により一番長いSn - Cl結合は室温の液体で分解して SnCl₃ とCl になることがEXAFSによりわかった。アニオンの局所構造、[BMI]カチオンの 構造とパッキング構造も検討した。Acetonitrile溶液中のSpeciesについてUV/Visで調べた。 [金属イオンを含む固定化イオン液体の調製、性質と構造]

金属イオンを含む固定化イオン液体はScheme 2 により調製した。Step 1 で合成したイ オン液体は、トリメトキシシリル基を有しており、シリカ表面の水酸基と反応して固定化 される. 更に、アセトニトリル中で金属塩化物を加えて、金属イオンを含む固定化イオン 液体が調製される。以後、ImmM_ILで表示する。固定化量は、元素分析と蛍光X線分析に より定量した。また、構造はXAFSとUV等で調べた. EXAFSとDR UV/Visの結果により、アニ オンはImmM_IL(M=Ni,Cu,Zn,Mn,Co)中に、MCI₄²⁻の構造を持ち、ImmPt_IL中には、 PtCI₃⁻(MeCN)の構造を持つことがわかった。ImmFe_ILは特別で、FeCI₄(O or N)のような構造 を持つ。固定化イオン液体のSchematic図はScheme 3 に示す。TGAの結果により、シリカ表 面上に固定化しているイオン液体は、固定化していないイオン液体より40度ぐらい分解 しやすい。

[Suzuki Cross Coupling 反応]

Ni²⁺を含むイオン液体と固定化イオン液体を用いて、Aryl ChlorideとArylboronic Acid間のSuzuki Cross Coupling触媒反応へ応用した. 反応条件として、触媒の前処理、 溶媒の種類、基質の濃度、ホスフィンの効果を検討した。[BMI]₂NiCl₄触媒の最適化条件は、 1 mol%Ni、PPh₃ / Ni = 2、2 mmol Aryl chlorideに対して、phenylboronic acidは 2.4 当量、 K₃PO₄は 4 当量、Dioxaneは 1.2 ml、反応温度は 80 度である。ImmNi_IL触媒の最適化条件は、 反応前Dioxane中に室温でNaOBu^tで 3 0 min処理することが必要である。反応温度は 100 度で、 ほかの条件は[BMI]₂NiCl₄と同じである。4-chlorotolueneと phenylboronic acid間の反応 に対して、[BMI]₂NiCl₄のTOFは 255 h⁻¹で、ImmNi_ILのTOFは 162 h⁻¹である。一部の反応結 果をTable 2 に示す。

[Kharasch 付加反応]

固定化イオン液体を用いて、Kharasch付加反応へ応用した。モデル反応として、スチレンと四塩化炭素間の付加反応を用いた。溶媒を使わないで、触媒は0.1Mol%、110度で20h還流した。Mn, Fe, Co, Ni, Pdの固定化イオン液体は活性をほとんど示さなかったが、ImmCu_ILはある程度の活性が出た。Cuの固定化触媒を用いて、反応条件を最適化し、触媒

の量は1mol%、四塩化炭素とスチレンのモル比は4で、反応温度は110度の条件で、収率 が最高で、93%になった。比較のため調製したシリカ担持CuCl₂は目的化合物の収率は0. 3%で、選択性はなかった。更にReuseについて、検討した。 5回まで、収率は83%を保 っていた。反応後の触媒の状態について拡散反射UVスペクトルを測定した。5回Reuseした 後もUV曲線はフレッシュな触媒とほぼ同じであった。 固定化Cuのイオン液体触媒のメリ ットは、分離が簡単、溶媒が不要で、Reuseも可能である、ということである。[BMI]₂CuCl₄ もKharasch反応へ応用した。3 Mol% Cu、100度で48h還流して、収率が68%で、固 定化イオン液体よりも低いことがわかった。

[結論]

イオン液体の性質を保持する金属イオンを含む新しいイオン液体のシリーズを合成し、X 線構造解析により結晶構造を明らかにした。金属イオンを含む固定化イオン液体も合成で きた。 EXAFS と拡散反射UVスペクトルによって、構造を明らかにした。ImmNi_IL/PPh₃ と[BMI]₂NiCl₄ / PPh₃の触媒系はSuzuki反応(基質:aryl chloride)に高い活性と選択性を 示した。固定化Cuイオン液体触媒はKharasch反応の初めての固定化触媒であり、溶媒は不 要で、Reuseが可能である。

Figure 1. Temperature dependence of the conductivity of ionic liquids.

Scheme 1. Preparation steps for ionic liquids

Table 1	Crystal	structure	data
---------	---------	-----------	------

IL	[BMI] ₂ SnCl ₄	[BMI] ₂ CuCl ₄	[BMI] ₂ NiCl ₄	[BMI] ₂ PtCl ₄	[BMI] ₂ ZrCl ₆
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space group	P2 ₁	Cc	Cc	$P2_1/n$	$P2_1$
a/Å	14.074(2)	14.090(2)	9.421(1)	8.807(2)	8.806(1)
b/ Å	9.648(1)	9.719(1)	16.775(1)	10.661(2)	17.730(2)
c/Å	17.917(3)	17.167(3)	15.596(2)	11.887(2)	17.751(2)
/deg	108.156(2)	107.356(3)	104.158(2)	91.5652(9)	90.0212(7)
Z	4	4	4	2	4
Temp./K	113	113	298	298	298
R1	0.048 I>2 (I)	0.045 I>3 (I)	0.065 I>2 (I)	0.038 I>3 (I)	0.038 I>3 (I)

Figure 2 ORTEP plots of [BMI]₂MCl₄(M = Cu, Ni, Sn, Pt) and [BMI]₂ZrCl₆, (a) [BMI]₂PtCl₄; (b) [BMI]₂SnCl₄; (c) [BMI]₂ZrCl₆; (d) [BMI]₂CuCl₄; (e) [BMI]₂NiCl₄.

Table 2. Ni-catalyzed Suzuki couplings

MeO Si O Ci Ci Ci		Me N N Si OMe
	SiO ₂ : Aerosil 300	-SI-SI

Scheme 3. Schematic struture of ImmM_IL (M = Cu, Ni, Zn, Mn, Co)

	Time	(h)	Yield	(%)
K	[BMI]2NiCl4/ImmNi_IL		[BMI]2NiCl4/ImmNi_IL	
<i>p</i> -Me	10	5	96	94
p-MeO	20	7	94	87
<i>p</i> -CN	1	1	100	100
р-СНО	2	1	100	100