論文内容の要旨

Study of the Dynamic Transport Properties of Organic Field Effect Transistors

(有機電界効果トランジスタの動的輸送特性に関する研究)

氏名 宮寺 哲彦

有機半導体は近年,基礎物性,デバイス応用の両観点から盛んに研究されている. 有機 半導体においては,無機半導体で従来用いられていた法則が成り立たないということが知 られており,そのメカニズム解明のためにさまざまな試みがなされている. しかしながら, 電荷蓄積や電気伝導のメカニズムなどの基礎的な点に関してはいまだ不明な点が多く未開 拓の研究領域である. 現在最も注目されている有機電界効果トランジスタ(OFET)は,金属 ー絶縁体基板上に有機薄膜を成長させる Metal-Insulator-Semiconductor (MIS) 構造をと り,基板金属-有機半導体間にかけるゲート電界により界面のバンドを変化させて伝導度 をコントロールするものである.本研究では,このゲート電界としてステップ電圧や交流 をかけて動的な変化を測定することにより,有機半導体のメカニズム解明につながるパラ メータを抽出することを目的としている. このような OFET の動的な挙動の解析は伝導の メカニズム解明のために非常に有効な測定手段と考えられるが,これまでほとんど研究例 はなく新しい試みである.また,メチル終端 Si(111)表面を用いて,ナノデバイス実現に重 要な有機-無機複合界面に関する基礎的な研究を行った.

OFET の動的特性の測定

<u>(1) 実験</u>

有機半導体薄膜の成長と電気伝導測定は真空チャンバー中で同時に行うことができ,薄 膜の膜厚をパラメータとして電流変化を測定することが可能となっている. 有機半導体材 料としては、それぞれ n 型と p 型の代表的な 有機半導体である C₆₀とペンタセンを用いた. 以下のデータはすべて C₆₀の結果を示してい る. 基板には高ドープの Si(100)基板(ゲート 電極)上に、厚さ 300 nm の SiO₂ 層を熱酸化 処理により作製した物を用いた. 伝導度測定 用のソース、ドレイン電極は、Au を SiO₂ 上にマスク蒸着したボトムコンタクト構造 のものを用いている.

電流の時間応答(上).このプロセスを繰り返し, 膜厚を連続的に変化させながら測定している.挿 入図は測定回路.

(2) 過渡現象解析

ドレイン電圧を 5 V に固定し、ゲート電圧として図1に示すようなステップ状の電圧を 加えて、時間分解能1msec で電流の時間変化(過渡応答)を測定した.測定は薄膜を成長 させながら *in-situ* で行っており、図1のプロセスを、膜厚を連続的に変化させながら繰り 返し測定している.以上のように測定した過渡応答のうち、電流の最も多く流れている、 ゲート電圧を 75 V から 100 Vに上昇させたときのものを膜厚に対してプロットしたもの を図2に示す.指数関数を用いてフィッティングを行うと、減衰曲線は複数の成分を含ん でおり、電流変化は複数の過程により生じることが分かった.時定数が数 msec の速い成分 は RC 分布定数回路を仮定することにより説明できることが分かった.遅い成分はトラップ 準位への電荷蓄積と考えられる.

ドレイン電流,しきい値電圧,遅い成分の時定数の膜厚依存性を図3に示す.しきい値電 圧は変化しないが,時定数は興味深い変化を示し,膜厚 0.5 nm 以上で 0.13 sec に飽和する

ことが分かった. 電流値および時定数が急激 に増大する膜厚 3.5 nm 付近では, 2 層目の グレインが成長する領域であることが原子

x10⁻³ -1.0--0.1) -8.0 s -0.0 -0.4-0.2-**⊐.**0.0 80 60 €₄₀. \$ 20. 0 150-() 100-100-50 0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 Film thickness (nm)

図 2. t = 0 で V_g を 75 V から 100 V にステップ状に 変化させたときの電流変化.連続的に変化する膜厚 を奥行き方向にプロットしてある.

図3.図2のデータにおける電流,しきい値電圧, 時定数の膜厚依存性.

間力顕微鏡(AFM)による形態観察により分かった.このときに形成される結晶粒界に多 くのトラップ準位が生じ,蓄積電荷が急激に増大する効果を示すと考えられる.

以上のように過渡応答の膜厚依存性を解析し,複数の指数関数成分を観測した.時定数の短い成分は CR 分布定数回路で説明された.長い成分はトラップへの電荷蓄積と考えられ, AFM による形態観察との比較から2層目の粒界が生成する領域で多くの蓄積電荷が寄与することが分かった.

(3) 周波数応答解析

図4挿入図のような回路構成で薄膜 とゲート電極の間の複素インピーダン スを測定した.薄膜成長前の Au 電極 の成分を差し引いたインピーダンスか ら得られる容量成分を図4にドットで 示す ($C = -1/\text{Im}(2\pi f \times Z)$).図から, 容量 Cは周波数のべき乗に比例し (C $\propto f \rightarrow p, p \sim 0.3$), ゲート電圧に対し て単調増加していることが分かる.

FET の容量が周波数の-0.3 乗に比例するような現象はこれまでに報告例がなく,本研究において初めての見出した特性である.

有機薄膜のように粒界を含む系の周波数応 答は従来, Cole-Cole プロットが用いられてい たが, FET では3端子系となるため, この手 法をそのまま用いることはできない.そこで図

図 4 ゲート容量の周波数依存性(両対数表示).ド ット:実験データ,実線:モデル計算. 挿入図:測 定回路.

5のような3端子の等価回路モデルを新たに考案した. グレイン内はチャネル抵抗 $r_g dx$ と ゲート容量 $c_g dx$ の分布定数回路で表し, グレイン間は粒界解析の常套手段として用いられ る RC 並列回路 $z_b = (i2\pi f C_b + 1/R_b)^{-1}$ を採用し, 一次元的にグレイン同士をつなぐ等価回路 となっている. この等価回路をもとに, 微分方程式を解くことによってインピーダンスを 計算し, 以下の式を得た.

$$Z_{N} = -\frac{z_{b}}{4} + \frac{1}{2} \frac{\zeta_{+}^{N/2} + \zeta_{-}^{N/2}}{\zeta_{+}^{N/2} - \zeta_{-}^{N/2}} \sqrt{\left(\frac{z_{b}}{2}\right)^{2} + z_{g} z_{b}} + \frac{r_{g}}{c_{g} 2\pi f i} \qquad (1),$$

$$\not z_{\pm} = \frac{z_{b}}{2} + z_{g} \pm \sqrt{\left(\frac{z_{b}}{2}\right)^{2} + z_{g} z_{b}} + \frac{r_{g}}{c_{g} 2\pi f i} \qquad (2), \qquad z_{g} = \frac{\exp\left(2l\sqrt{r_{g} c_{g} 2\pi f i}\right) + 1}{\exp\left(2l\sqrt{r_{g} c_{g} 2\pi f i}\right) - 1} \sqrt{\frac{r_{g}}{c_{g} 2\pi f i}} \quad (3).$$

ここで変数 N はチャネル内のグレイン数であり、以下のフィッティングでは AFM による 形態観察から見積もられる、N=1000 という値に固定した.式(1)を用いて、実験結果 に対してフィッティングを行った(図4実線).フィッティングに際しては、粒界とグレインの抵抗比 $\alpha = lr_g/(R_b + lr_g)$ と容量 C_b , C_g の値を変化させ、その他のパラメータは実験的に得られた FET の静特性の値を用いている.フィッティングパラメータ数が少ないにも関わらず高周波数側でよい一致を示しており、モデルは現象を定量的によく再現しているといえる.パラメータの最適値として $\alpha = 0.31$, $C_b = 88$ nF, $C_g = 1.2$ nF が得られ、物理的描像と整合性のよい値を定量的に求めることに成功した.

周波数依存性は物理的にはチャネル内への交流電場の進入長を考えると、周波数が小さいほど、ゲート電圧が大きいほど電場の侵入長は増大する.容量の周波数依存性はこの電場の侵入長によってチャネル内の実効的な面積が変化していることに起因する.このことを考えると、実験データとモデルの低周波数側での不一致を説明することができる.電場の侵入効果は、モデルでは考慮されていない S-D 電極の外周にも及んでおり、電場の進入が顕著になる低周波数、高 Vg 側でデータとモデルの不一致が生じていると考えられる.

以上のように OFET の周波数応答を測定することにより、これまで報告されていない容量のべき乗則を発見した.現象を定量的に説明するために Cole-Cole プロットを3端子系に拡張する等価回路モデルを新たに考案し、定式化した.このモデルにより実験結果を定量的に説明することに成功し、FET 内部の粒界に関するパラメータを見積もることができた.

メチル終端 Si(111)表面の構造および電子状態

Si(111)表面をメチル基で終端した表面の構造および電 子状態を調べた.角度分解紫外光電子分光(ARUPS)を用 いてバンド分散を決定した.反射高速電子線回折 (RHEED)を用いて表面 Si 原子とメチル基が1:1で吸着 していることが分かった.超高真空中で700℃までその構 造を保ち,それ以上の温度ではSiC(111)表面に変化するこ とがわかった.図6に加熱後のRHEED 像を示す.

図 6 800℃加熱後のメチル終端 Si(111)表面の RHEED 像.入射 方向:上[ī12],下[ī01].Sは基 板,TはSiC由来のストリーク.

まとめ

従来,研究例の少ない OFET の動的伝導特性に着目し,研究を行った. 過渡現象測定, 周波数応答測定をそれぞれ行い,トラップ準位や粒界など,有機半導体特有の現象を観測 することに成功した. Cole-Cole プロットを3端子系に拡張した新たな等価回路モデルを考 案し,定式化することにより,実験データを定量的に説明することに成功した.また,メ チル終端 Si(111)の構造および電子状態を調べ,バンド分散を決定し,700℃までの安定性 を実験的に示した.以上の成果により,有機半導体の伝導のメカニズム解明につながる, OFET 内の粒界の効果や時間応答に関するパラメータを取得する新たな方法を与えること に成功し,また,有機デバイスにおいて重要な有機・無機複合界面に関する有用な知見を得 ることができた.