論文内容の要旨

Measurement of CP-Violating Asymmetries in the Neutral B Meson Decaying to the $\rho\pi$ State Using a Time-Dependent Dalitz Plot Analysis

(中性 B 中間子の ρ 中間子と π 中間子への崩壊における CP 非対称の測定)

日下 暁人

In the standard model (SM), CP violation arises from an irreducible phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2]. A Dalitz plot analysis of the decay $B^0 \to \rho\pi \to \pi^+\pi^-\pi^0$ offers a unique way to determine the angle ϕ_2 in the CKM unitarity triangle without discrete ambiguities (for ϕ_2 in the range between 0 and π), which cannot be obtained from analyses of other modes sensitive to ϕ_2 such as $B \to \pi\pi$ or $B \to \rho\rho$ [3]. The Dalitz plot analysis uses isospin and takes into account a possible contamination from $b \to d$ penguin transitions. In addition, using measurements of the related charged decay modes $B^+ \to \rho^+\pi^0$ and $B^+ \to \rho^0\pi^+$ provides further improvement of the ϕ_2 determination [4, 5].

In this Thesis, we present the result of time-dependent Dalitz plot analysis in $B^0 \to \pi^+\pi^-\pi^0$ decays and a constraint on ϕ_2 based on the result. We use a 414 fb⁻¹ data sample that contains 449 × 10⁶ $B\bar{B}$ pairs collected on the $\Upsilon(4S)$ resonance. The data were taken at the KEKB collider [6] and collected with the Belle detector [7].

In the decay chain $\Upsilon(4S) \to B^0 \overline{B}{}^0 \to f_{CP} f_{\rm tag}$, where one of the B mesons decays at time t_{CP} to a final state $f_{CP} = \pi^+ \pi^- \pi^0$ and the other decays at time $t_{\rm tag}$ to a final state $f_{\rm tag}$ that distinguishes B^0 and $\overline{B}{}^0$, the time- and Dalitz plot-dependent differential decay rate is

$$\begin{split} \frac{d\Gamma}{d\Delta t \, ds_{+} ds_{-}} &\sim e^{-|\Delta t|/\tau_{B^0}} \left\{ \left(|A_{3\pi}|^2 + |\overline{A}_{3\pi}|^2 \right) \right. \\ &\left. - q_{\rm tag} \cdot \left(|A_{3\pi}|^2 - |\overline{A}_{3\pi}|^2 \right) \cos(\Delta m_d \Delta t) + q_{\rm tag} \cdot 2 {\rm Im} \left[\frac{q}{p} A_{3\pi}^{\star} \overline{A}_{3\pi} \right] \sin(\Delta m_d \Delta t) \right\} \,. \end{split}$$

Here $(\overline{A})_{3\pi}$ is the Lorentz-invariant amplitude of the $B^0(\overline{B}^0) \to \pi^+\pi^-\pi^0$ decay, b-flavor charge $q_{\rm tag} = +1$ (-1) when $f_{\rm tag}$ is a B^0 (\overline{B}^0) flavor eigenstate, and $\Delta t \equiv t_{CP} - t_{\rm tag}$; and p and q define the mass eigenstates of neutral B mesons as $pB^0 \pm q\overline{B}^0$, with average lifetime τ_{B^0} and mass difference Δm_d . The variables of Dalitz plot, s_+ , s_- , and s_0 are defined as

$$s_{+} \equiv (p_{+} + p_{0})^{2}, \quad s_{-} \equiv (p_{-} + p_{0})^{2}, \quad \text{and} \quad s_{0} \equiv (p_{+} + p_{-})^{2},$$

where p_+ , p_- , and p_0 are the four-momenta of the π^+ , π^- , and π^0 , respectively, in the decay of $B^0 \to \pi^+\pi^-\pi^0$. The amplitudes $\overline{A}_{3\pi}$ have the following Dalitz plot dependences

$$A_{3\pi}(s_+, s_-) = \sum_{\kappa=(+,-,0)} f_{\kappa}(s_+, s_-) A^{\kappa} , \text{ and}$$

$$\frac{q}{p} \overline{A}_{3\pi}(s_+, s_-) = \sum_{\kappa=(+,-,0)} \overline{f}_{\kappa}(s_+, s_-) \overline{A}^{\kappa} ,$$

where $(\overline{A})^+$, $(\overline{A})^-$, and $(\overline{A})^0$ are complex amplitudes corresponding to $B^0(\overline{B})^0 \to \rho^+\pi^-$, $\rho^-\pi^+$, and $\rho^0\pi^0$, respectively.

By the Dalitz plot analysis, we determine all the relative sizes and phases of the amplitudes A^{κ} and \overline{A}^{κ} . The amplitudes are related to ϕ_2 through an isospin relation [4, 5] by

$$e^{+2i\phi_2} = \frac{\overline{A}^+ + \overline{A}^- + 2\overline{A}^0}{A^+ + A^- + 2A^0}$$

Consequently, the Dalitz plot analysis allows us to constrain ϕ_2 without discrete ambiguities. Combining our analysis with information on charged B decay modes, we perform a full Dalitz and isospin analysis for the first time and obtain a constraint on the CKM angle ϕ_2 ,

$$68^{\circ} < \phi_2 < 95^{\circ}$$
.

as the 68.3% confidence interval consistent with the standard model (SM). A large SM-disfavored region also remains. This result is combined with the other measurements from $B \to \pi\pi$ and $B \to \rho\rho$, and its consistency with the SM expectation is examined; we confirm they are consistent with each other at a precision of $\sim 7^{\circ}$.

The amplitudes A^{κ} and \overline{A}^{κ} can also be related to the quasi-two-body CP-violation parameters of $B^0 \to \rho^{\pm} \pi^{\mp}$ decay processes, $\mathcal{A}^{CP}_{\rho\pi}$, \mathcal{C} , $\Delta \mathcal{C}$, \mathcal{S} , and $\Delta \mathcal{S}$, which describe the time-dependent decay rates of the processes as

$$\frac{d\Gamma}{d\Delta t} \sim \frac{1 \pm \mathcal{A}_{\rho\pi}^{CP}}{2} e^{-|\Delta t|/\tau_{B^0}} \Big[1 - q_{\rm tag} \cdot (\mathcal{C} \pm \Delta \mathcal{C}) \cos(\Delta m_d \Delta t) + q_{\rm tag} \cdot (\mathcal{S} \pm \Delta \mathcal{S}) \sin(\Delta m_d \Delta t) \Big] \,,$$

where the upper (lower) signs are taken for $B^0 \to \rho^+\pi^- (\rho^-\pi^+)$. Our analysis yields

$$\begin{array}{rcl} \mathcal{A}^{CP}_{\rho\pi} & = & -0.12 \pm 0.05 \pm 0.04 \; , \\ \mathcal{C} & = & -0.13 \pm 0.09 \pm 0.05 \; , \\ \Delta \mathcal{C} & = & +0.36 \pm 0.10 \pm 0.05 \; , \\ \mathcal{S} & = & +0.06 \pm 0.13 \pm 0.05 \; , \quad \text{and} \\ \Delta \mathcal{S} & = & -0.08 \pm 0.13 \pm 0.05 \; , \end{array}$$

where the first and second errors correspond to statistical and systematic errors, respectively. We can relate the $\mathcal{A}_{\rho\pi}^{CP}$, \mathcal{C} , and $\Delta\mathcal{C}$ with the direct CP-violation parameters $\mathcal{A}_{\rho\pi}^{+-}$ and $\mathcal{A}_{\rho\pi}^{-+}$, which are defined by

$$\mathcal{A}_{\rho\pi}^{\pm\mp} = \frac{\Gamma(\overline{B}{}^0 \to \rho^{\mp}\pi^{\pm}) - \Gamma(B^0 \to \rho^{\pm}\pi^{\mp})}{\Gamma(\overline{B}{}^0 \to \rho^{\mp}\pi^{\pm}) + \Gamma(B^0 \to \rho^{\pm}\pi^{\mp})} \; .$$

We obtain

$${\cal A}_{\rho\pi}^{+-} = +0.21 \pm 0.08 \pm 0.04$$
, and ${\cal A}_{\rho\pi}^{-+} = +0.08 \pm 0.17 \pm 0.11$.

Our measurement also includes the information on the quasi-two-body process of $B^0 \to \rho^0 \pi^0$, whose time-dependent decay rate is

$$\frac{d\Gamma}{d\Delta t} \sim e^{-|\Delta t|/\tau_{B^0}} \left[1 + q_{\rm tag} \cdot \mathcal{A}_{\rho^0\pi^0} \, \cos(\Delta m_d \Delta t) + q_{\rm tag} \cdot \mathcal{S}_{\rho^0\pi^0} \, \sin(\Delta m_d \Delta t) \right].$$

The CP-violation parameters $A_{\rho^0\pi^0}$ and $S_{\rho^0\pi^0}$ are measured to be

$$\begin{array}{lcl} \mathcal{A}_{\rho^0\pi^0} & = & -0.49 \pm 0.36 \pm 0.28 \; , & \text{and} \\ \mathcal{S}_{\rho^0\pi^0} & = & +0.17 \pm 0.57 \pm 0.35 \; , & \end{array}$$

where $S_{\rho^0\pi^0}$ is measured for the first time.

References

- [1] N. Cabibbo, "Unitary Symmetry and Leptonic Decays," Phys. Rev. Lett. 10 (1963) 531-532.
- [2] M. Kobayashi and T. Maskawa, "CP violation in the renormalizable theory of weak interaction," Prog. Theor. Phys. 49 (1973) 652-657.
- [3] A. E. Snyder and H. R. Quinn, "Measuring CP asymmetry in $B \to \rho \pi$ decays without ambiguities," *Phys. Rev.* D48 (1993) 2139–2144.
- [4] H. J. Lipkin, Y. Nir, H. R. Quinn, and A. Snyder, "Penguin trapping with isospin analysis and CP asymmetries in B decays," Phys. Rev. D44 (1991) 1454-1460.
- [5] M. Gronau, "Elimination of penguin contributions to *CP* asymmetries in *B* decays through isospin analysis," *Phys. Lett.* **B265** (1991) 389–394.
- [6] S. Kurokawa and E. Kikutani, "Overview of the KEKB accelerators," Nucl. Instrum. Meth. A499 (2003) 1-7. and other papers included in this volume.
- [7] Belle Collaboration. A. Abashian et al., "The Belle detector," Nucl. Instrum. Meth. A479 (2002) 117-232.