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#XREH: Development of a finite-difference scheme using optimally accurate
operators for computation of synthetic seismograms in heterogeneous media and its
applicability to geophysical exploration
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High performance finite difference (FD) schemes for computation of synthetic seismograms are
developed and tested following mathematical analysis and evaluations of their cost-effectiveness
(as quantified by the computation time required to obtain a given level of accuracy). On the basis
of these tests we find that optimally accurate O(2,2) (second order in space and time) FD schemes
are preferable for practical computations. We then present calculations for a standard 2-D test
model.

A general criterion for optimally accurate numerical operators was derived by Geller & Takeuchi
(1995) and, based on this criterion, an O(2,2) optimally accurate FD scheme (second order in both
time and space) was derived by Geller & Takeuchi (1998) for 1-D cases and by Takeuchi & Geller
(2000) for 2-D and 3-D cases. Following a similar procedure, we derive two new optimally ac-
curate schemes for the 1-D case: an O(2,4) optimally accurate FD scheme (second order in time
and fourth order in space) and an optimally accurate scheme using the spectral element method
(SEM). We then compare the various optimally accurate schemes for 1-D heterogeneous and ho-
mogeneous models. All are broadly similar in cost-performance ratios for solution errors of around
1%, which is the accuracy range commonly required for practical applications. However, due to
ease of programming, the O(2,2) optimally accurate FD method seems preferable in practice.
However, if extremely high accuracy (solution errors of, say, less than 0.01%) were required, then
SEM approaches might be preferable, but the difficulty of grid generation for complex structures
is a significant problem. We show that all of the optimally accurate schemes are superior to all of
the conventional schemes (schemes which do not satisfy the criterion for optimally accurate oper-
ators). We also show that staggered grid (SG) schemes, which are widely used, can be transformed
to conventional FD schemes which use displacement as the only dependent variable and that such
schemes have no advantage in computational accuracy and efficiency over other conventional FD
schemes. A major advantage of the FD schemes considered here (both optimally accurate and
conventional schemes) is that they can stably handle external free surface boundaries, as they are
based on the weak form of the equation of motion.
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Figure 1: Discontinuous two-layered model with free surface boundary conditions (left) and rel-
ative r.m.s. error versus CPU Time (right). Compared schemes are: OPT2 and OPT4 (0(2,2)
and O(2,4) optimally accurate scheme), SEM-OPT (optimally accurate SEM) and CONV2 and
CONV4 (conventional second and fourth order scheme). Each line color is displayed by Courant
number that each scheme shows the best performance with it. Relations between the color and
Courant number are red: 0.1, blue: 0.3 and magenta: 0.8.

Previous optimally accurate O(2,2) schemes handled internal lithological discontinuities by
treating each such boundary as a potential external free surface, and then “overlapping” the oper-
ators for the respective regions. This approach can be used for simple models, but is impractical
for the complex heterogeneous models used in exploration seismology. In order to extend the op-
timally accurate O(2,2) operators to such complex models, we developed an optimally accurate
heterogeneous method, following similar approaches using conventional FD operators. A theoret-
ical analysis supports the use of this method at internal boundaries, and computational examples
demonstrate its accuracy. We also developed a method for computing synthetics in combined
fluid-solid media. Finally we apply the new heterogeneous scheme to the “Marmousi model,”
a standard test model used in exploration seismology, and demonstrate that the new scheme is
well suited for application to actual problems. The Marmousi model was originally presented as
an acoustic model. We use a Poisson’s ratio of 0.25 and also make calculations for an elastic
Marmousi model.

All of the calculations in this thesis are for 1-D or 2-D cases, but the heterogeneous 0(2,2)
scheme presented here can be applied to the 3-D case.
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Figure 2: Snapshots of a computation in combined fluid-solid mdeia. The upper and lower layer
are fluid and solid respectively. The fluid-solid interface exists in the middle of the model and a
source of a point force is located in the fluid layer. Snapshots at # = 0.1875 (s) of the x- (left) and
z- (right) components of the displacement with the pressure change. Propagation of P wave in the
solid layer can be seen to be faster than in the fluid layer and S-wave can be also seen in the solid
layer. In the fluid layer reflected P wave from the boundary is seen.
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Figure 3: a 2-D numerical example for validation of the new scheme. Snapshot of x (left) dis-
placement at 0.25 (s) computed by OPT2 and used as a numerical solution to compute relative
RMS errors and relative RMS errors versus elements per wavelength of x displacement (right).
The log scale used for the vertical axis and results by OPT2 and CONV2 are shown in red and
green respectively.



Figure 4: P velocity of Marmousi model (top) and snapshots of x displacement of P-SV problem
from 0.4 to 1.6 s by 0.4 s interval (from second to bottom). A point force is located at x = 2800 and
z= 6000 m. The free surface condition is used for the top boundary and an absorbing boundary is
used for other external boundaries. These figures indicate aplicability of the new scheme to actual
problems arise in the geophysical seismology.




