論文の内容の要旨

論文題目

Synthesis and characterization of macromolecules from inclusion complex of cyclodextrin and polyethylene glycol

(シクロデキストリン・ポリエチレングリコール包接化合物から

得られる高分子化合物の合成と評価)

氏名 田村 潔

1.概要

D-glucose の環状オリゴ糖であるシクロデキストリン(cyclodextrin; CD)は、その 疎水性空孔を用いて包接化合物を形成する。低分子化合物やイオンだけでなく、線状高 分子化合物ともネックレス状の包接化合物を形成する性質は特筆に値する。現在までに 数多くの CD/polymer 包接化合物が報告されているが、αCD/PEG 包接化合物が最初に発見 された例である。このαCD/PEG 包接化合物の形成は、水酸基が他の官能基で置換された CD と両末端に官能基を有する PEG においても起ることは容易に考えられる。さらに PEG の両末端の官能基として、CD に導入された官能基と共有結合を形成する組み合わせを選択 すると、CD/PEG 包接複合体の形成により2種類の官能基を有する包接複合体が生成し、 反応させることで包接複合体が結合した高分子化合物が得られることが予想される。

CD に2個の官能基を導入し、その官能基と反応 して共有結合を形成する官能基を両末端に有する ポリエチレングリコール (polyethylene glycol; PEG) と CD/PEG 包接化合物を形成させて、反応 することで、Figure 1 に示すような CD/PEG 包接 構造と共有結合により 3 次元ネットワークが形成 され、ゲルが得られることが予想される。Figure 1 に示す構造のゲルは、(I) CD および PEG の生体適

合性、(II) 架橋点である CD 環が動くことによる柔軟性、(III) 共有結合による丈夫さ を有すると考えられる。また、CD と PEG の包接化合物形成反応は平衡反応であるた め、PEG により空孔を占められていない CD の存在が考えられる。その空孔を用いた 薬物の包接・徐放機能の発現も可能になると考えられる。このような生体適合性および、 柔軟性と丈夫さを併せ持つ材料は、例えば、セラミックス、プラスチック、金属などで 構成されている人工関節への応用が挙げられる。

本論文では、2つ NH2基を導入したジアミノ化 CD と両末端に COOH 基を有する PEG から得られるゲルの評価、特にその構造と性質を明らかにすることを目的として 行った研究結果について述べる。

本研究における最終目標はゲルの評価であるが、ゲルは固体であるが故に通常の高分 子化合物のような分析は困難である。そこでモデル反応として1つ NH2 基を導入した モノアミノ化 CD と両末端に COOH 基を有する PEG の縮合生成物の分析を行い、得 られた知見もゲルの評価に用いるという研究方法を採用した。

2.モノアミノ化 CD (mono-6-deoxy-mono-6-amino α, β, γCD; NH₂αCD, NH₂βCD, NH₂γCD) と両末端に COOH 基を有する PEG (polyethylene glycol dicarboxylic acid; PEGdiCOOH) の縮合生成物の評価

NH₂ α CD, NH₂ β CD, NH₂ γ CD は文献に従い合成した。 PEGdiCOOH は分子量 3000 のものを用いた。縮合反応は、 溶 媒 に *N*,*N*-dimethylformamide (DMF)、塩 基 と し て *N*,*N*-diisopropylethylamine (DIPEA)、縮合剤として *O*-(benzotriazol-1-yl)-*N*,*N*,*N*',*N*'-tetramethyluronium hexafluorophosphate (HBTU)を用いて行った。NH₂ 基と COOH 基が物質量比で 1:1 となるように、NH₂CD : PEGdiCOOH = 2:1 の物質量比で仕込んだ。また、濃度依存 性を調べるため、[NH₂CD]=0.15, 0.10, 0.05, 0.01 M で縮合反 応を行った。所定量の NH₂CD と PEGdiCOOH を DMF と共 に 3 時間 80°C で加熱後 24 時間室温で攪拌し、塩基と縮合剤

Table 1. Results of condensation reaction
of NH ₂ CD with PEGdiCOOH

-		
sample code	[NH ₂ CD] / M	yield / % ⁽¹⁾
α0.15	0.15	72.3
α0.10	0.10	64.1
α0.05	0.050	76.1
α0.01	0.010	70.8
β0.15	0.15	86.8
β0.10	0.10	89.8
β0.05	0.050	85.2
β0.01	0.010	96.7
γ0.15	0.15	81.8
γ0.10	0.10	82.6
γ0.05	0.050	85.8
γ0.01	0.010	86.0

1. Yield was calculated from $100 w_P/(w_{CD}+w_{PEG})$ w_P, w_{CD}, and w_{PEG} represent the weight of product, NH₂CD, and PEGdiCOOH, respectively.

を加え 24 時間反応させた後、透析することで縮合生成物を得た(Table 1)。縮合生成物の ¹H-NMR、¹³C-NMR スペクトルより、アミド結合が形成され、CD/PEG (mol/mol) = 2 で あることが分かった。縮合生成物を GPC により分析したところ、いずれの縮合生成物も複 数のピークを与えた(Figure 2)。

Figure 2. GPC elution curves of products from PEGdiCOOH and (a) NH₂αCD, (b) NH₂βCD, and (c) NH₂γCD

Figure 2(a)において、分子量が最も小さい分画(18-19 min.)は PEG 鎖がαCD の空 孔を貫通することなく PEG 鎖の両末端にαCD が結合したダンベル型分子であると考 え4を合成した(Scheme 1)。中間生成物3のマススペクトル(Figure 3)からアセチ ル化されたダンベル型分子3の生成が確認され、その脱アセチル化物が目的とする4 であることが確認された。

2000 4000 6000

(a)

(b)

におけるピーク I、II、III のピークトップ分子 量を計算した結果(Table 2)、ピーク II、III の 分子量はピーク I の分子量のそれぞれ約2倍、 3倍であることが分かった。この結果は、ピー ク II、III がそれぞれ架橋点としてのαCD/PEG 包接構造を1個、2個含むブランチポリマーで あることを示し(Figure 5)、縮合反応前に NH₂αCD/PEGdiCOOH 包接化合物が形 成されたことを示している。また、

> Figure 2a は反応濃度が高いほど NH₂αCD/PEGdiCOOH 包接化合物がよ り多く形成されたことを示している。

NH₂αCDとPEGdiCOOHから得られた縮合 生成物の分析結果を考慮すると Figure2b、2c において GPC 溶出曲線が複数のピークを与え たことは、CD の種類に関わらずモノアミノ化 CD と PEGdiCOOH の縮合反応により、 CD/PEG 包接構造を含むブランチポリマーが

生成したことを示している。つまり、NH₂βCD/PEGdiCOOH、NH₂γCD/PEGdiCOOH 包接化合物も縮合反応前に形成されることを示す。また、NH₂βCD、NH₂γCD におい ても NH₂αCD と同様の包接化合物形成反応における濃度依存性が認められた。 βCD/PEG 包接化合物はαCD/PEG 包接化合物のように沈殿として得られないために、βCD は PEG と包接化合物を形成しないと報告されてきた。しかし、本研究の結果は、βCD は PEG と可溶性の包接化合物を形成することを示している。

3154.63

3335.02=1685.51x2-36

PEGdiCOOH

6489.65

(OAc)17

2 (calc. 1685.51)

m/z

Ш (b) 15 17 18 19 20 21 time / min. Figure 4. GPC elution curves of (a) 4 and (b) α0.15

Table 2. Peak top molecular weight (Mp) of peaks I, II, and III

sample code	Peak III	Peak II	Peak I
α0.15	11.8x10 ³ (x2.79)	8.28x10 ³ (x1.96)	4.23x10 ³
4			4.42x10 ³

Figure 5. Schematic structure of macromolecules of (a) peak III and (b) peak II in Figure 4b

3. ジアミノ化 CD (di-6-deoxy-di-6-amino α, β, γCD; diNH₂αCD, diNH₂βCD, diNH₂γCD)と両末端に COOH 基を有する PEG (polyethylene glycol dicarboxylic acid; PEGdiCOOH) の縮合生成物の評価

diNH₂αCD、diNH₂βCD、diNH₂γCD は Scheme 2 に従い合成した。これらのジアミノ化 CD の NH₂ 基の位置は Figure 6 のように同定された。

縮合反応は溶媒に DMF、塩基として DIPEA、縮 合剤として HBTUを用いて行った。NH2基と COOH 基が物質量比で 1:1 となるように、diNH2CD: PEGdiCOOH=1:1 の物質量比で仕込んだ。また、

濃度による生成物の変化を調べるため、[diNH₂CD]=0.10, 0.075, 0.05, 0.01 M で縮合反応を行った。所定量の diNH₂CD と PEGdiCOOH を DMF と共に 3 時間 80°C で加熱後 24 時 間室温で攪拌し、塩基と縮合剤を加え 24 時間反応させた。反 応 の 結 果 、 [diNH₂αCD]=0.10, 0.075, 0.05 M 、

 -6^{AD} deoxy-di- 6^{AD} -diamino γ CD di- 6^{AE} -deoxy-di- 6^{AE} -diamino γ CD Figure 6. Chemical structures of (a) diNH₂ α CD, (b) diNH₂ β CD, and (c), (d) diNH₂ γ CD

Figure 7. Picture of obtained gel

[diNH₂βCD]=0.10 M、 [diNH₂γCD]=0.10, 0.075, 0.05 M の条件でゲル状物質が得られた。 純水で洗浄することで、Figure 7 に示すような透明なハイドロゲルが得られた。この結果 はゲル形成には濃度依存性があることを示している。

また、diNH₂αCD、diNH₂γCDを用いた場合に得られたゲルの性質をしらべたところ、(I) 加熱によりゾル化、(II) pH 7.0以上でゾル化、(III)長時間の水への浸漬によるゾル化が 観察され、再びゲルへは戻らない不可逆なゲル・ゾル変化を示した。

4. 結論

本研究において、NH2基を導入した CD と両末端に COOH 基を有する PEG を縮合する ことにより生成する高分子化合物の構造および性質について検討した。

NH₂CD と PEGdiCOOH の縮合生成物の評価により、CD の種類に関わらず CD/PEG 包 接構造を含むブランチポリマーが生成し、その生成量には濃度依存性があることが分かっ た。また、本研究によりβCD も PEG と溶媒に溶ける包接化合物を形成することが分かった。

diNH₂CD と PEGdiCOOH の縮合反応により、不可逆なゲルーゾル変化をする透明なハ

イドロゲルが得られた。ゲル形成における濃度依存性、NH2CD と PEGdiCOOH の縮合生 成物の分析結果は、diNH2CD/PEGdiCOOH 包接複合体間で縮合反応することによりゲル が生成したことを示しており、CD/PEG 包接構造がゲルに含まれていることを示している。

本研究で得られたブランチポリマーおよび、ゲルは CD/PEG 包接構造を架橋点とする点 で新規性の高い高分子化合物である。また、本研究は包接化合物形成反応を新たな架橋点 を有する高分子の新規合成法を提案するものである。