論文の内容の要旨

Hygroscopic Tolerance and Permittivity Enhancement of Phase-controlled La₂O₃ for High-k Gate Insulators (高誘電率ゲート絶縁膜に向けたランタン酸化物薄膜の相を制御する ことによる耐吸湿性向上および高誘電率化の研究)

Yi Zhao

趙 毅

The scaling of the silicon dioxide (SiO_2) layer thickness of the metal-oxide-semiconductor field effect transistor (MOSFET) gives rise to the unacceptable leakage current flowing through the metal-oxide-semiconductor structure. Therefore, high permittivity (k) materials are being considered to replace SiO₂ as the new MOSFET gate dielectric and insulator of (metal-insulator-metal) MIM capacitors. Lanthanum oxides (La_2O_3) are widely studied to substitute SiO_2 as high-k gate insulators due to its high permittivity and large band gap. However, it is well known that La₂O₃ is not stable in the air and very hygroscopic, forming hydroxide. To use it as a gate insulator, we have to enhance the hygroscopic tolerance of La₂O₃ film. Furthermore, there is a large scattering of the permittivity of La₂O₃ film, both very high permittivity (\sim 28) and very low permittivity (\sim 7) reported. In this study, firstly we investigated the hygroscopic and low permittivity phenomena of La_2O_3 films systematically. Then according to analyze the possible reasons for hygroscopic phenomena and low permittivity of La₂O₃ films, phase control of La₂O₃ film is proposed for enhancing the hygroscopic tolerance and permittivity. We demonstrated phase controlled La₂O₃ film with Y_2O_3 doping (LaYO_x film) which not only shows strong hygroscopic tolerance, but also a high permittivity due to its good crystallinity hexagonal phase.

We found that the moisture absorption induces the formation of hexagonal $La(OH)_3$. Furthermore AFM results indicate that the moisture absorption also increases the surface roughness of La_2O_3 films due to the volume expansion after the moisture absorption because of the formation of low density hexagonal $La(OH)_3$. This should be another concern of La_2O_3 film' s application as a high-*k* gate insulator. Also the moisture absorption can induce the flat band voltage shift and hysteresis enlargement of C-V curve of La_2O_3 film.

The moisture absorption should be a very possible reason for the low permittivity La_2O_3 films reported because of the formation of $La(OH)_3$ with a lower permittivity after the moisture absorption. Furthermore, the permittivity of La_2O_3 without any moisture absorption is still a little low. This indicates that the low permittivity of La_2O_3 films can not be attributed to the moisture absorption phenomena totally.

The hygroscopic tolerance of La_2O_3 films were enhanced by Y_2O_3 doping due to the phase control, which suppresses the intrinsic reaction between La_2O_3 with H_2O . Furthermore, the larger lattice energy of Y_2O_3 is also an important factor to enhance the total lattice energy of La_2O_3 . In the other hand, our experiment results indicate that the UV ozone post treatment can suppress the moisture absorption of La_2O_3 films to some degree. This suppression effect might come from the healing of oxygen vacancies in La_2O_3 films, since the oxygen ambient annealing also shows similar suppression effects.

We found that the permittivity of La_2O_3 film without moisture absorption is also a little low, only about 20. It means that the low permittivity of La_2O_3 can not be attributed to the moisture absorption totally. The poor crystallinity is also responsible for it. Therefore, we can enhance the permittivity of La_2O_3 by the crystallizing the film well. We prepared well crystallized $LaYO_x$ films with a high permittivity (~26). The high permittivity is partly due to the higher permittivity hexagonal phase as the hexagonal phase shows a much larger permittivity than cubic phase for rare earth oxides (R_2O_3) . LaYO_x film also shows very good electrical properties and a larger band.

Although LaYO, film shows a high permittivity and strong moisture-resistance to moisture, some researchers think that as gate dielectric amorphous film is with some merits due to many reasons. Therefore, here we also prepared amorphous LaTaO, films as high-k gate insulators. Furthermore, from the viewpoint of crystallization mechanism research, it will also be very interesting to investigate both easy crystallized and amorphous La-based oxides, which is also helpful for understanding other high-k oxide materials. Our results show that 35% Ta-LaTaO, film keeps amorphous even annealed at 1000 °C. The high crystallization temperature of LaTaO_x film is due to the large difference of valence state and ion size of La and Ta ions. Combining with reported results about La-based, we proposed a consistent explanation on the crystallization mechanism of La-based ternary oxides. At the same time, 35% Ta-LaTaO, film shows a permittivity as high as 30. We consider that the high permittivity is attributed to the high density of Ta₂O₅ which can induce a high permittivity although the LaTaO_x film is amorphous. Larger band gaps of LaTaO_x films than Ta₂O₅ were observed, which is due to the coupling effect between La 5d orbital and Ta 5d orbital through bonding to a common oxygen atom, the 5d anti-bonding state energy of Ta atom is enhanced and then the conduction band offset of Ta with Si is increased compared with that of Ta_2O_5 . Therefore, the band gap of LaTaO_x film is larger than that of Ta_2O_5 .

In conclusion, the hygroscopic tolerance and permittivity of La_2O_3 films can be modulated with phase control due to Y_2O_3 doping. Y_2O_3 doped La_2O_3 films ($LaYO_x$) not only show a strong hygroscopic tolerance, but also a high permittivity which are very promising as high-*k* gate insulators for next generation CMOS devices.