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1. INTRODUCTION

Magnetic Resonance Angiography ( MRA) is increasingly

used to provide volumetric information of vascular system.

Vessel segmentation is one of demanding applications that

has received a considerable attention Accurate assessment of

MRA images requires that the vessel structures to be

extracted from MRA data sets. Patient specific computerized

3D model of vascular has important applications in

augmented realty based navigation for intervention and

biopsy. While evolutionary schemes based on the level set

theory have proved to be effective tools for vessel

segmentation in high field MRA images, with current

developments of lower field interventional MR scanners, they

need to be robust in the presence of higher noise levels. One

typical observation in level set based methods concerns with

damaged intensity information of thin vessels that causes the

evolution to stop before extracting the whole vessel. This is

illustrated in Fig.1. Panel ( a) is the maximum intensity

projection from a portion of a 1.5 Tesla Time-Of- Flight

MRA data set. The arrow indicates the pinching of a thin

vessel caused by the image noise. However, in a higher

magnetic field (3 Tesla) a smooth intensity pattern from the

same vessel is obtained that clearly shows its extension. Such,

noise “speckles” may stop the front evolution towards the

thiner part, and consequently multiple distinct vessel

fragments may be obtained. Masutani et al. [ 1] addressed

this issue, using a mathematical morphology region-growing

method. However the vessel structures remained

un-interpolated between discontinuities.

In order to reduce the risk of front leakage to the background,

a number of methods have been using shape constraints. For

example topology constrained surface evolution has been

proposed in [2], a method that uses 3D skeletons of the front

to refine the spurious branches for iterative bifurcation and

vessel segmentation. Also soft priors has been introduced in

[3] for minimizing the leakage from noisy edges using a

ball-filter which penalizes the deviations from tubular

structures. Obviously, any geometric regularization of the

segmentation process, with the ability to minimize the

leakage is important for vessel segmentation.

2. RELATED WORK AND CONTRIBUTION

Currently, a number of techniques have been developed for

vessel segmentation based on the advanced level set

evolutionary methods. Lorgio et al [ 4] has proposed

CURVES using image gradient strength information, and the

surface minimum curvature as the smoothing term. A level

set method is introduced by Vasilevsky [ 5] that integrates

the directions of gradient vectors into the evolution equation

so that the gradient flux through the evolving curve is

maximized. Also capillary active contours is invented by Yan

et al. [6], a method that is based on the capillary force

acting on the free fluid surface through a capillary tube. In

this research, it is assumed that vessels are curve-linear

structures, this is the basic assumption as in [ 7] for

enhancing the vascular structures. Based on this general

assumption, a shape functional for effective geometrical

regularization of tube-like structures is proposed. Our

regularization method preserves cylindrical structures by

imposing anisotropic front constraint in the level set

variational framework. Our regularization method has three

basic important properties:

1) Unlike the previous curvature based smoothing methods,

the solution of our geometric energy minimizing scheme is

not always a shrinking surface, but instead it can extend

toward local “meaningful” surface features.

2) Since leakage develops isotropic structures, by applying

anisotropic front constraint, it also reduces the risk of

leakage. 3) It is a curvature dependent flow and therefore

has smoothing effect. Therefore it can basically overcome

some limitations encountered in previous methods.

We also utilize the idea of the ball-filter to extract

information about the local segmented structures, however,

our methodology is basically different from [ 3] since it can

provide a robust image-independent estimation of the vessel

direction for expansion. In fact, as the evolution may stop to

extract the entire vessel, extracted structures show some

elongations. One option is to utilize this “ shape-induced”

information to propagate the surface. This can be useful when

the image content information is not reliable due to noise or

intensity ambiguities. In that case our model enforces the

surface to expand anisotropically in the main surface



orientation so that it can pass over small noise speckels. The

outlined framework can be combined with existing level set

based vessel segmentation functionals.

3. METHOD

3.1 Basic assumptions
Assume for a given open region D, the evolving surface is

represented as the zero level of the level set function

where < 0 for inside of the object, and > 0 for

outside. H(x) is representing Heaviside function such that H

(x) = 1 if x > 0 otherwise H(x) = 0. Also

is the Dirac delta function. Throughout this research the
phrases such as: front, surface (3D) or contour (2D) are
used interchangeably with implied dimensions.

(a)

(b)

Fig. 1. (a) A portion of a TOFMRA 1.5 Tesla data set, the

arrow indicates a damaged pattern of a thin vessel, ( b) The

same portion in 3 Tesla indicates an smooth vascular pattern.
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Fig. 2. The contour is indicated in bold and other level sets in

dot line, arrows indicate the eigenvector corresponding to

smallest eigenvalue of structure matrix . Not that the

inner level sets around x in (A) are rather circular compared

to (B). This property can be measured by .

3.2 Local shape structure
The local structure of the evolving surface at point x, can be
expressed by the correlation matrix of gradient vectors of
surface signed distance transform (SDT) in its neighborhood.
Assuming that re-initialization of level set function to SDT of

the evolving surface enforces , we define the

following matrix:

(1)

where , is the transpose of the

gradient vector and is the neighborhood

function with the general property of: =

Here we define: = 1 if lies inside the cubic

neighborhood of size pixels around x. Since the iso-level
surfaces tend to be spherical as they get farther from the

surface, inclusion of is intended to reduce the

directional ambiguity. At a given point estimation of local
structure of the evolving surface, is defined by a modified
correlation matrix of gradient vectors of its signed distance

transform within a user selected scale, i.e. .

Application of anisotropy constraint is achieved by evaluating
the availability of a major local orientation and propagating
the surface at that direction. This is accomplished by
analyzing the eigenvalues and vectors of M(x).

3.3 Local shape measure
It is shown in [8] for a given point such as placed on the
border, the smallest eigenvalue of the correlation matrix

is zero if the local structure has a cylindrical form and

the corresponding eigenvector specifies the cylinder axis.
Fig.1 is a two dimensional illustration, we observe that fig. 1
(A), the local structure is rather spherical compared to (B)
whish has more “tapered” shape. It can be shown that in

smallest eigenvalue of in (B) is smaller than (A).
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Since we are following a variational based optimization frame

work, we chose a differentiable form of where

the function is non-increasing function and

is the trace of inverse matrix. It is easy to see that

will take its minimum if the local structure has a zero
eigenvalue.

3.4 Shape energy functional
Based on this definition, we define a geometric geodesic
active contour model that minimizes a shape energy:

.

(2)

Note that because depends on , the

corresponding minimization problem is different from
conventional geodesic active contour model. In the next step
this is minimized using gradient-decent method and with

constraint , the corresponding Euler-Lagrange can

be obtained as:

(3)

where is the surface minimal curvature the dependency

on x is implied and the matrix L(x) is defined as below:

(4)

where denotes the derivative of f. we note that for a

given x, the matrix L(x) is the weighted average of positive

definite matrices of its neighborhood determined by

. It is interesting to look at the the properties of (8)

in further etail. The right hand side of evolution consists of
three different terms:

Smoothing: is a mean curvature dependent smoothing

term. Note that by multiplication of f, the curvature remains
effective if local structure is isotropic, therefore annihilation
of narrow structures with lower values of f is limited.
Advection: Second term is an advection term that attracts the
object’s border toward lower values of f. It reduces the
orientation ambiguity, and also minimizes the leakage from
spurious noisy edges.

Propagation: To analyse this term, we note that since <
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0 we have < 0, i.e., this term propagates the

surface outward. The important point is that depending on the

orientation of and eigenvectors of L( x) the

expansion is anisotropic. For segmentation of tubular
structures, provided that the size of neighborhood is large
enough, L(x) maintains its main component in the axial
orientation. As a result propagation may only appear at the
endings of those structures. This can be useful when the
image content information is not reliable due to noise or
intensity ambiguities.

3.5 Implementation

Central-differencing scheme was used for computing of

and L(x). Having the values of cost function f,

advection term is calculated by simple up-winding scheme.

The first order forward-Euler method is used for digitization

over time and Heaviside and delta functions are evaluated

using their smeared-out versions and with =

1.5 pixel, as explained in [ 9]. In this research we have set

, where is a small positive number to

prevent singularity of division to zero. This setting is optional

but, practically we obtained better results using this

definition. The algorithm is implemented using a fast narrow

band level set method [10]. We note that in (4)

computation of matrix L( x) is expensive in terms of CPU

cycles. As an optimization, at each iteration the evolving

front is compared to its status in previous iteration and L( x)

is computed at places where the front has displacements. By

this means a large portion of the surface that remains intact

does not require updating of structural matrix and the

program executes much faster.

3.6 Sample evolutions

Fig.3 is the evolution of a cylinder. For this experiment, the

neighborhood radius size is set to four pixels, i.e, the same

radius of the cylinder. Initial shape is indicated on the top,

and at every iteration the right hand side of ( 3) is color

mapped onto the evolving front. Note that the expansion

occurs exclusively in the axial orientation and as the

evolution proceeds, the both ends turn into needle like

structures with anisotropy. Basically, by extra iterations

development of sharper heads is possible, however it is

practically limited to the resolution of the implementation

grid.
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Fig.4 is a comparison between our proposed regularization

method and surface minimum curvature method . For both

methods the top left image is the initial surface. The left

middle and bottom figures correspond to shape evolutions

after 20 and 60 iterations under surface minimal curvature.

Note the shrinkage starting from the ends. The right side of

Fig.4 is the result of our proposed method. Note that the

surface remains smooth and the anisotropic expansion

appearing exclusively on axial orientations closes the ring.

This shows that, using our method while preserving

smoothness, improvement of vessel segmentation is possible

even if the image information is noisy or not adequate.

3.7 Intracranial vascular segmentation
A combination of above defined shape dependent energy
f u n c t i o n a l w i t h t h e g e o d e s i c a c t i v e

Fig. 3. Evolution of a cylinder; the speed of propagation on

the surface is color coded by its correspondant color bar in

right, Top: initial cylinder, Middle: after 100 iterations,

Bottom: after 200 iterations, elongation occurs only in axial

orientation,

Fig. 4. Evolution of a ring with a few embedded gaps; Left

from top to bottom: initial surface, after 20 and 60 iterations

under the surface minimum curvature respectively, the surface

shrinks to zero by further iterations. Right from top to

bottom: after 20, 30 and 50 iterations using our proposed

shape regularization method, anisotropic expansion appears

exclusively on the “ tips” so that the ring closes itself.

Contours [ 11] where

is a uniform decreasing function of the image

gradients, is considered as the total quantity to be minimized
and the Euler-Lagrange equation is derived to minimize the

energy .The final level set equation (with

implied dependency on x is given:

(5) here has the same definition as in [4]. The MRA
data sets are initially smoothed by a Gaussian filter and
interpolated along side the axial axis. Evolution starts from a
user defined threshold value for the available MRA data, and
is forwarded in time using forward Euler method, and stops
after a predefined number of iterations. Every few iterations
the level set function is reinitialized to a signed distance
transform of the zero level set.
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4. RESULTS

We have applied our method to MRA data sets and

consistently obtained robust extraction of vascular structures.

A typical example is presented here. For qualitative

assessment, results are compared with the pioneer CURVE

algorithm proposed by Lorgio.et.al in [ 4]. Figure 5-A

maximum projection intensity of a Phase Contrast MRA data

set with the size of 256 × 256 × 60 voxels and spacing of

0.625 × 0.625 × 0.9 mm that is obtained from a 0.4 Tesla

MR scanner. Figure 5-B is the result of our segmentation

method specified equation ( 5). Segmentation achieved using

CURVE algorithm is indicated in ( C). Segmentation using

our method is indicated in figure 2-D from a different angle

of view. Comparison of these two figures, particularly the

areas indicated by an arrow, reveals that anisotropic

propagation term can be very useful to improve the continuity

of the extracted vessels.

5. DISCUSSION AND CONCLUSION

Our method combines geometrical and image content
information. The geometry is captured using the signed
distance transform of the evolving surface and is useful to
improve the continuity of vessels. Though accurate
comparison with other segmentation methods requires access
to the same data sets, initial results are very encouraging.
Validation using images obtained from higher field MR
scanners stays as our future research plan. Compared to the
minimal surface curvature smoothing method that is widely
used for level set based vessel segmentations, the proposed
method is computationally expensive but it can provide
anisotropic elongation which is particularly important for
thin structure segmentation. Using our regularization
method reasonable smoothing can also be obtained,
nevertheless if an explicit smoothing is required it can be
combined with minimal surface curvature smoothing scheme.

One possible interesting direction for research is the
development of a mechanism to suppress our regularization
model at vessel branchings. Whether this can be achieved
using geometrical features or image content features remains

as the future research activities.

(A)

(B)

(C)

(D)

Fig. 5: A): Maximum intensity projection image of a sample

PCMRA data set, (B): Segmented vessels using our

method, (C), (D): Segmented structures using CURVE and

our method from different angle of view.
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