wCE E Efficient Formal Equivalence Checking Methods
for System-Level Design Descriptions
(¥ AT b L NIVEREHERIC N T DR R 72 B
FSMPERREEF 5 ICBE 9 B HF%E)

K 4% A s

Due to the great advance of semiconductor technology, the integration
of VLSI (Very Large Scale Integration) circuits has been increased for
many years. This enables to integrate more and more transistors on a
chip, which results in that a large whole system can be realized as a
single chip so called System-on-a-Chip (SoC). When we design an SoC,
it is a serious problem that the design period tends to be very long since
the design size of SoCs is much larger than that of the conventional VLSI
designs. To use billions of transistors that can be integrated in a chip,
the design productivity of SoCs should be much improved.

One solution to improve the design productivity is introducing system-
level design as a starting point of SoC design. In the most hardware
designs, designers start designing from RTL (Register Transfer Level).
In RTL, the function executed by combinational circuits for each clock
cycle and the hardware resources (for example, adder and multiplier)
to execute the function are decided. On the other hand, in system
level, the (partial) execution order of the behaviors and the functional
units consisting of many memory elements and combinational circuits
(for example, filter and inverse discrete cosine transform) to execute the
behaviors are decided. Therefore, we can say that system level design is
more abstract than RTL design in terms of time and hardware resources.
Since SoCs usually implement a system consisting of both hardware and
software, it is preferable to use a single design language to describe
designs. To satisfy this need, C language or C-based design language is
used in system level design, which enables to design both hardware and
software seamlessly. .

Currently, system-level design is not completely automated by tools.



That is, before the final design descriptions that can be processed by
behavioral synthesizers and compilers are generated, a number of refine-
ments, changes, and optimizations of design descriptions are carried out
by designers. Therefore, it is very important to check the equivalence
of the design descriptions when they are modified. This is because, if
the bugs inserted in system level are found in the later design steps, for
example in RTL or in gate-level, a lot of time and cost will be spent to
debug. Therefore, equivalence checking of system-level designs is stud-
ied.

In system-level design, there are few formal verification methods that
are used widely in industry, and simulation plays a main role to verify
designs. This is because large system-level designs cannot be solved by
formal methods in practical periods. At the same time, however, simu-
lation has also a serious problem in feeding good test patterns when a
design is very large. Currently, state-of-the-art formal verification meth-
ods can solve one module of system-level design, which is corresponding
to the size that can be synthesized by behavioral synthesizers. If our
proposed methods can check the equivalence of two large design con-
sisting of several modules, it can be said that the scalability of formal
methods is much improved.

One powerful method to check the equivalence is applying symbolic
simulation to both of the designs under verification with generating
equivalence classes of variables and expressions. This approach does
not need any test patterns, hence, can be classified as formal verifica-
tion. However, it cannot be applied to large designs since the run time
of symbolic simulation increases exponentially to the design sizes. To
realize efficient equivalence checking of large system-level design descrip-
tions, in this thesis, several verification methods are proposed.

The proposed verification methods utilize the difference between the
design descriptions. In practical, system-level design is proceeded by
gradually refining designs step by step. Therefore, the difference between
designs of one refinement step is expected to be relatively small. The
basic idea of the proposed method is that we can reduce the computation
effort of equivalence checking utilizing the difference.

An efficient equivalence checking method is proposed that reduces
the number of equivalence checking between variables and expressions
utilizing difference. Using the difference and dependence of designs, in
this method, equivalence checking of variables and expressions is not



carried out when two variables under checking are not affected by any
difference. This method enables more efficient verification for designs
with the same or similar control structures. However, the verification
time by this method increases exponentially to the design size, although
it can reduce a large number of equivalence checking between variables
and expressions.

A more efficient equivalence checking method using difference is pro-
posed. In the method, symbolic simulation is applied only to the related
portions to the difference, while it is applied from the-start to the end
of each path in the previous method. For each difference between the
designs under verification, equivalence checking based on symbolic sim-
ulation is performed first only for the difference. If all differences can
be proved to be equivalent, the result of the verification is equivalent.
When a difference cannot be proved to be equivalent, the verification is
repeated extending the verification areas until the equivalence is proved.
The extension of the verification areas is carried out along data and
control dependence. This local checking approach results in that the
equivalence can be proved with small computation effort even if the de-
sign itself is very large.

When verifying designs including parallel behaviors, it is impossible
to apply equivalence checking to all possible schedulings, since the num-
ber of schedulings increases exponentially to the design size. To solve
the problem, a sequentialization method is proposed. Given a design
description with parallel behaviors, the method genérates an equivalent
design description without parallel behaviors. In the method, two state-
ments that can be executed in parallel and dependent to each other
are checked whether or not the execution orders of them is always the
same. If the statements are always executed in the same order due to
synchronization, they can be sequentialized into an equivalent two se-
quential statements. Otherwise, they cannot be sequentialized, since
the executions of the statements may occur different results depending
the execution orders. Using this sequentialization method, equivalence
checking of two parallel behaviors can be reduced to equivalence check-
ing of only a pair of two sequential behaviors, instead of checking many
pairs of all possible scheduling.

When symbolic simulation is applied to loops, they are unrolled to
avoid the execution paths with infinite length. This results in the in-
crease of verification time especially when the number of unrolling is



large. As a solution of the problem, an equivalence checking method
of loops without loop unrolling is proposed. It identifies the symbolic
values of loop iterators that are required to compute an arbitrary index
of the output arrays. After the required symbolic values of the itera-
tors are extracted, symbolic simulation is applied only to the values for
equivalence checking. As a result, the number of statements to be sym-
bolically executed does not increase even if the number of iterations is
actually large.

The several experiments conducted in this thesis confirm that the
proposed methods enable to verify the equivalence of large system-level
designs between practical design refinements.





