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1. Heterobimetallic Catalysis in Asymmetric 1.4-Addition of O-Alkylhydroxylamine to o.f-Unsaturated
N-Acylpyrrole : ‘
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Scheme 1. Catalytic asymmetric aza-Michael reaction and transformations.



surrogate is desirable. Therefore, I selected o,B-unsaturated N-acylpyrrole as a candidate. Due to aromaticity of pyrrole
ring, the reactivity of N-acylpyrrole is supposed to be much higher than ester, amide and be as good as enones.
Coordination mode of o,f-unsaturated N-acylpyrrole is also sﬁnﬂar to enones. As expected, YLB (Y-Li-BINOL) and
DyLB (Dy-Li-BINOL) (Figure 1). complexes promoted aza-Michael reactions of methoxylamine and o,3-unsaturated
 N-acylpyrroles, affording products in up to 96% yield and 94% ee (Scheme 1) The product was successfully
converted into f-amino esters and aziridines as shown in Scheme 1(b). I also established a new efficient method for the
synthesis of various o,B-unsaturated N-acylpyrroles using HWE reaction. | ‘ ‘

2. Bismuth-_and Hafnium-Catalyzed Intermolecular Hydroamination of 1,3-Dienes and Vinyl Arenes with
Carbamates, Sulfonamides, and Carboxamides

Catalytic inteﬁnolecular hydroamination of olefins is an atom-economical method to provide nifrogen-containing
building blocks. When I started this project, hydroamination of 1,3-diene investigated were limited to alkyl amines and
aromatic amines. There was no report of intermolecular hydroamination reaction of 1,3-diene with wéak nucleophiles
like sulfonamides, carbamates, benzamides. Because 1,3-dienes readily polymerize, the key point of designing an
efficient hydroamination of 1,3-dienes is how to suppress the polymeﬁzaﬁon, while promoting the desired 1:1 addition
chemo-selectively. I planned to perform the reaction based on a new Lewis acid- x-acid dual controlling' concept. If
some metal complex can activate 1,3-dienes, and at the same time, locate amide close to the activated diene, the desired
reaction would proceed faster than undesired polymerization (proximity-effect-control). After numerous investigations,
- combination of Bi(OTf); and Cu(CH;CN)PFs was found to be suitable, giving desired products in up to 96% yield
(Table‘ 1)2 Detailed mechanistic studies showed that the exchange of PFg anion and "OTf anion gave more cationic
Bi(OT{),PFs species which plays a signiﬁcant role in the proposed catalytic cycle in Figure 2. Bi(OTf) ,PF¢not only
activates 1,3-dienes to generate cationic species, but also interacts with amides to fix amides in close proximity.
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Figure 2. Proposed catalytic cycle.

Considering the allylic bismuth species ({1) in Figure 2, the reaction with vinyl arenes can also form similar bismuth



species. Therefore, I speculated that the bismuth catalyst would catalyze the hydroamination of vinyl arenes. When
2-oxazolidone was used, however, yield was poor using the bismuth catalyst. Further metal screening revealed that
Hf(OTf); was more reactive than Bi(OTf). Hf{OTL)/Cu(CH;CN)PFs system promoted the reaction with
2-oxazolidone nicely in good yield. The HROTT),/Cu(CH;CN),PFs system was applicable to the hydroamination of
wide range of vinyl arenes, inéluding less reactive vinyl arenes with electron-withdrawing groups and a readily’
polymerizable vinyl arene with an electron-donating group. In case of a vinyl areﬁe with an electron-donating group,
reaction was performed at 8 °C to avoid self-polymerization. ‘ ’ .
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Scheme 2. Hafnium catalyzed hydroamination of styrene.

3. Bismuth-Cata Direct Substitution of the Hydroxyl Group in Alcohols with Sulfonamides, Carbama

and Carboxamides

Substitution of the hydroxyl group in alcohols by amine nucleophiles generally requires pre-activation of the
alcohols because of the poor leaving ability of the hydroxyl group. Alcohols are gehera]ly transformed into
corresponding halides, carboxylates, or related compounds with good leaving ability. The proc&s inevitably produces
stoichiometric amounts of salt-waste. Substitution of the halides and xélated compounds also produces salt-waste and
requires stoichiometric amounts of base. Therefore, direct catalytic substitution of alcohols with amines is desirable. In
part 2, the Bi(OTf)s/MPF; (M =K or Cu) system not only activates 1,3-dienes as m-acid, but also controls the position
of amide nucleophiles as a Lewis acid. I hypothesized that bismuth catalysis would also be suitable for activation of
allylic and propargylie alcohols. ' | .

With the Bi(OT{)yMPFs M = K or Cu) system, various allyl alcohols and propargyl alcohols were efficiently
transformed into corresponding allylic and propargylic amides in good yield (Table 2). Mechanistic studies showed that
even with co-existence of base like K2CO3, the reaction proceeded without any problem to give desired product at
similar efficiency. When using chiral allyl and propargy] alcohols, racemic allylic amides were obtained, implying the
formation of carbemum intermediate. |
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Table 2. Direct catalytic allylic and propargylic substitution of various alcohols with amides.
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2 Reaction was run at 40 [C.





