論文内容の要旨

論 文 題 目 High-resolution photoemission study of electron-doped high-temperature superconductors (和訳)高分解能光電子分光法による電子ドープ系高温超伝導 体の研究

氏名 池田 正樹

高温超伝導体は、学術的関心及び応用への期待から数多くの研究が行われている。高温超伝導 体は、CuO2 面とブロック層を交互に積層した構造をとっており、CuO2 面にキャリア(ホール、 電子)をドープすることで超伝導が出現する。これまでホールドープ系高温超伝導体の数多くの 実験から超伝導機構が解明されてきたが、電子ドープ系高温超伝導体は超伝導転移温度(T_c)が 低く、実験が困難であるため研究が遅れがちであった。しかし、電子ホール対称性の解明、さ らには電子ドープ系高温超伝導体のみがもつ興味深い特性の解明のためにも、電子ドープ系高温 超伝導体の研究は不可欠である。そこで本研究では、電子ドープ系高温超伝導体の未解決問題に 焦点をおいた。論文は、導入(第1章)から始まり、電子ドープ系高温超伝導体の基礎物性及び 背景(第2章) さらに光電子分光法の原理(第3章)と続く。第4章では、電子ドープ系高温 超伝導体の特性を活かすことで、圧力による電子構造の変化を議論する。第5章では、電子ドー プ系高温超伝導体に独特のアニール効果の解明、さらにはアニール効果を利用して波数空間にお ける超伝導の寄与についても議論する。第6章では、近年注目を浴びている高エネルギーキンク の測定を行い、電子ドープ系高温超伝導体とホールドープ系高温超伝導体の違いを議論する。第 7章では、近年合成された Y0.38La0.62Ba1.74La0.26Cu3Oy (YLBLCO) を用いて、電子ドープ ホー ルドープ間の本質的な化学ポテンシャルのとびについて議論する。そして、第8章で全体の結論 を述べる。以下に、本論文の研究成果の概要について示す。

1. 電子ドープ系高温超伝導体の化学圧力効果

高温超伝導体の Tc は圧力をかけることで大きく変化するため、このときの電子構造の変化は

興味深い。しかし圧力をかけた状 態で、電子状態を直接観測する (a) 10.5 手法である角度分解光電子分光 k, 法を行うことは装置の都合上困 難である。そこで、一部のイオン をイオン半径が異なる別のイオンに 置換することで格子定数の大きさを

変える方法、つまり化学圧力に注目 した。 電子ドープ系 高温 超伝導体 $Ln_{2-x}Ce_{x}CuO_{4}(Ln = Nd, Sm, Eu) では、 Ln³⁺$ のイオン半径が小さくなると、面内の格子 定数が小さくなり、つまり化学圧力が大き くなり、圧力下と同じ状態が実現する。そ こでこれらの物質の角度分解光電子分光を 行い、圧力による電子構造の変化を観測した。

図 1 に、Nd_{1.85}Ce_{0.15}CuO₄ (NCCO) $T_{c} =$ 22 K], $Sm_{1.85}Ce_{0.15}CuO_4$ (SCCO) [$T_c = 16$ K], Eu_{1.85}Ce_{0.15}CuO₄ (ECCO) [$T_c = 0$ K] のフェル Ξ

1.0

0.0

0.0

(d) NCCO SCCO -40 -20 ergy relative to E_F (meV)

3.76 3.77 3.91 3.92 3.93 3.94 3.95

るに従い、反強磁性の効果によるギャップが開いてきた。反強磁性の効果は、タイトバインディ ング解析のパラメーター *△E* に対応し、化学圧力と共に反強磁性の 図 3. (π/2, π/2) 付近の 効果が強くなる様子が定量的にもわかる (図 2. (a))。したがって、 エネルギー分布曲線。

0.0

3.90 3.91 3.92 3.93 3.94 3.95

圧力をかけることで超伝導転移温度が変化する要因は、フェルミ面の曲率が変化し、(π/2, π/2)付 近で反強磁性の効果によるギャップが開くからだと考えられる。また、タイトバインディング解 析において、(π, 0)付近とノード付近でフィッティングの様子が異なった。これは、反強磁性の 効果が波数依存性を持っているからだと考えられる。

2. 電子ドープ系高温超伝導体のアニール効果

電子ドープ系高温超伝導体の T。 は、キャリアのドープ量だけでなくアニール条件を変えるこ とでも大きく変化する。また、電子ドープ系高温超伝導体では、元素置換による電子ドープだけ では超伝導は出現せず、アニールを行う必要がある。しかし何故、超伝導出現にアニールが必要 であるのかわかっていない。この問題を解決するために電子ドープ系高温超伝導体の角度分解光 電子分光を行い、電子構造の変化を調べた。

図4にPr1.18Lao.7Ceo.12CuO4 (PLCCO)のas-grownの試料 (ag-PLCCO)、弱くアニールした 試料 (wa-PLCCO)、十分にアニールした試料 (an-PLCCO) のフェルミ面及び、NCCO の

図 2. 化学圧力に対するタイトバインディング フィット及び LDA 計算の結果。

In-plane lattice constant (Å)

as-grown の試料 (ag-NCCO)、十分 にアニールした試料 (an-NCCO) のフェルミ面を示す。as-grown の試料で開いていたフェルミ面上 のエネルギーギャップは、アニール を行うことで、閉じていく様子がわ かる。図5 にギャップの大きさの 指標となる leading edge shift の 中点の波数依存性を示す。 ag-PLCCO では、フェルミ面全体で ギャップが開いている。そしてアニー

ルを少し行うことでまず (π, 0) 付近のギャ

ップが閉じ、十分にアニールを行うとフェルミ面全体で ギャップが閉じる。また、ag-NCCO では、ギャップ の振る舞いが wa-PLCCO と類似しており、十分にア ニールすることでギャップがフェルミ面全体で閉じる。 したがって、アニールによる効果は、as-grownの試料 で開いていたギャップを埋めることである。また、ギ ャップが閉じていく様子と超伝導の関係に注目すると、 ノード付近の反強磁性ギャップが閉じたときに超伝導 が出現する。これは、ノード付近の電子状態が超伝導に大 きく寄与していると考えられる。なお、近年のホールドープ 系高温超伝導体の超伝導ギャップの異方性の研究から

図 4. PLCCO 及び NCCO のフェルミ面。 ag-PLCCO 100 wa-PLCCO an-PLCCO (meV) - ag-NCCO 80 an-NCCO edge shift 60 40 Leading 20 10 20 30 40 50 Fermi surface angle

系高温超伝導体の超伝導ギャップの異方性の研究から 図 5. leading edge shift の波数依存性。 は [2]、ノード付近が超伝導に寄与していることが報告された。したがって、キャリアの種類に

よらずノード付近の電子状態が超伝導に大きな寄与していると考えられる。

3. 高温超伝導体のバンド分散における高エネルギーキンク

近年、高エネルギー領域で キンク構造(高エネルギーキ ンク)が観測され、様々なモ デルを用いてこの起源の議論 が行われている。しかし、議 論のほとんどはホールドープ 系高温超伝導体のノード付近 についてのみ行われているた め、電子ドープ系高温超伝導 体の研究、さらにはより広い 波数空間における研究が求め

図 6. ARPES 強度プロットと2 階微分。 られている。そこで、電子ドープ系高温超伝導体 NCCO を用いて様々な波数の高エネルギーキンクの振る舞いを観測し、ホールドープ系高温超 伝導体の結果と比較した。

図 6 に NCCO のバンド分散及び EDC の 2 階微分をとったものを示す。ノード付近のバンド 分散から [図. 6(a)]、高エネルギーキンクの位置がおよそ 0.7 eV であることがわかる。ホールド

ープ系高温超伝導体ではおよそ 0.3-0.4 eV であっ たため、より深いエネルギー位置にシフトしたと考 えられる。図7 に様々な波数における高エネルギー キンクの位置を示す。(π, 0) 付近からノード付近に 行くに従い、高エネルギーキンクの位置が深くなっ ている。また、ホールドープ系高温超伝導体の結果 と比較すると [3]、0.3-0.4 eV だけ全体的に高結合 エネルギー側にシフトしていることがわかる。この シフトの大きさは内殻X線光電子分光から見積もら れた化学ポテンシャルシフトの値に等しいため、高 エネルギーキンクは化学ポテンシャルの大きさだけ シフトしていると考えられる。図6の EDC の2階 微分に注目すると、高エネルギーキンクのエネルギ ー位置は、(π, 0) 付近ではバンドの底に近く、ノード付近ではコヒーレント領域とインコヒーレ

ント領域の境界に近い。

れ、非本質的な効果が含まれている可能性がある。この問 図 8. 化学ポテンシャルシフト。 題を解決するために、同じ結晶構造を保ちながらホールと電子をドープできる YLBLCO [4] の 化学ポテンシャルのとびに注目した。

図 8 に YLBLCO 及び他の高温超伝導体の化学 ポテンシャルシフトの様子を示す。化学ポテンシャ ルのとびは、La₂CuO₄ と Nd₂CuO₄ ではおよそ 0.3 eV であったが、YLBLCO ではおよそ 0.8 eV である。このように違いが生じた理由としては、マ ーデルングポテンシャルの違いが考えられる。また 光学測定によると、YLBLCO の電荷移動ギャップ の大きさは、1.4-1.7 eV であるので、ホール(電子) ドープにより、価電子帯の頂上(伝導帯の底)へ化 学ポテンシャルは移動していない。しかし、間接ギ ャップであることを考慮に入れると、図9 にまとめ たバンドの模式図のように理解できる。

[1] E. Pavarini et al., Phys. Rev. Lett. 87, 047003 (2001).

[4] K. Segawa et al., Phys. Rev. B 74, 100508 (2007).

[2] W. S. Lee et al., Nature 450, 81 (2007). [3] J. Chang et al., Phys. Rev. B 75, 224508 (2007).

0.0 -0.2 (eV) relative to $E_{\rm F}$ -0.4 -0.6 NCCO (hv = 55 eV)NCCO (hv = 100 eV)Energy r LSCO (J. Chang et al.) Λ -0.8 \diamond Eu-LSCO (J. Graf et al.) ∇ Bi2212 (J. Graf et al.) $-0.36(1-|\cos(2\phi)|)-0.39$ -1.0+ -1.2 10 20 30 0 40 Fermi surface angle (ϕ)

図 7. 高エネルギーキンクの波数依存性。

図 9. バンドの模式図。