RLONEDEE

Dependent Type Inference for
Program Verification

(71 7T DRFED 72 D DRTFAIHERR)
R LS

Our society relies on computer systems, which are composed of many pro-
grams. Therefore, it is important to verify correctness of those programs. Cur-
rently, system developers rely on manual program inspection and testing to
ensure that their programs work as per their specifications. However, manual
inspection and testing may overlook potential bugs of programs. In contrast,
formal verification methods can exhaustively verify correctness of programs, and
are expected to play a central role in program verification. In the framework
of type-based program verification, specifications are expressed as types, and
type inference is used to verify that programs conform to those specifications.
Dependent types are a special kind of types that may depend on values, and
are useful for statically verifying detailed specifications of programs such as the
absence of array bounds and pattern match errors. Compared to other formal
program verification methods such as model checking and abstract interpre-
tation, the method based on dependent types can straightforwardly deal with
extended features of programming languages such as higher-order functions and
recursive data structures.

For designing a type inference algorithm for a dependent type system, we
need to put restrictions on the type inference algorithm since the typability
problem of a dependent type system is usually undecidable. However, restric-
tions imposed by existing work are not desirable for program verification. For
example, Dependent ML (DML) proposed by Xi et al. requires users to declare
dependent types for all functions, so that the burden imposed on users is too
heavy. The type inference algorithm for sized types proposed by Chin et al. fixes
the shape of dependent types a priori, and tries to infer as precise dependent
types as possible. Thus, verifiable properties and data structures are limited to
predefined ones in their algorithm, and it may waste computational costs for
inferring unnecessarily precise dependent types for program verification.

In this thesis, we propose a novel program verification method based on
dependent types which solves the problems of the existing methods mentioned

Y



above. We introduce dependent types to a higher-order functional language
with recursive data structures, and propose two type inference algorithms. The
first algorithm infers dependent types which are precise enough to verify given
specifications of a program on demand. The algorithm basically infers an output
specification of a function from a call-site of the function, and propagates that
specification backward to infer the input specification. We have implemented a
prototype type inference system, and conducted two experiments. In the first
experiment, our system successfully verified that insertion and merge sort pro-
grams always return an ordered list by automatically inferring dependent types
of the auxiliary functions of these programs. Note that the type inference algo-
rithm for sized types cannot verify such property since the algorithm can only
infer the lengths of lists. DML requires users to write complex type annotations
for verification of the sorting programs. In the second experiment, we have
inferred dependent types of the standard list library functions for OCaml pro-
gramming language by using call-sites of those functions collected from existing
application programs written in OCaml. The results of the experiment indicate
that our algorithm can infer preferable dependent types for not only program
verification but also a documentation purpose.

One of the problems of existing type inference algorithms and our first algo-
rithm described above is that if verification of a program fails, these algorithms
cannot find out a reason of the failure automatically. Especially, the type infer-
ence algorithms cannot offer enough information to users for judging whether
their programs are really incorrect: The type inference algorithms may reject a
correct program due to the lack of analysis precision. In order to address the
problem, in this thesis, we propose the second type inference algorithm which
can find a counter-example against typability of an ill-typed program, namely
a program input that leads to a run-time error, as an explanation of why the
program is ill-typed. The algorithm can iteratively refine dependent types with
interpolants until the type inference succeeds or a counter-example is found. We
have implemented a prototype type inference system and conducted two exper-
iments to evaluate the second type inference algorithm. In the first experiment,
our system successfully verified that array programs obtained from DML sample
programs cause no array bounds error without requiring type annotations. We
then intentionally modified the array programs to obtain incorrect programs,
which actually cause array bounds errors. We analyzed these programs with
our system and successfully found counter-examples. In the second experiment,
we successfully verified that insertion and merge sort programs always return
an ordered list.





