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1. Introduction 
1.1 Background 

At the beginning of the current decade it was realized that the frequency wall has been hit. Mainly due to 

power consumption problems, the processor frequency could not longer be raised, literally putting an end to the serial 

speedup or ``free speedup'' we have been getting for the last two decades or so. The only way to move forward was to 

increase parallelism, or in other words the number of cores. Currently, CPUs with four cores are mainstream and 

eighty-core prototypes have already been presented. In the near future, CPUs with hundreds of cores are expected. 

This has lead to a paradigm shift in numerical methods and solver design, as only methods which expose large 

amounts of fine-grained parallelism will be able to scale.  

Krylov-type iterative solvers are widely used in the field of finite element computation or for other 

problems where the matrix of the system to be solved is too large for direct methods to work. Accelerated solvers will 

benefit fields like structural analysis or computation fluid dynamics, just to name a few. To be truly useful for real 

world problems, such solvers have to be large scale and not limited by the amount of memory available on one 

accelerator. 

 

1.2 Motivation and purpose 

GPUs are the most efficient accelerators, in terms of both performance and cost, for linear algebra 

applications.  Last generation GPUs from both NVIDIA and AMD provide close to two Teraflop/s of computational 

power. Moreover, GPUs are the only truly mainstream manycore processors available today, having hundreds of cores. 

They provide a glimpse into the future of CPUs and, as such, developing efficient methods, algorithms and codes for 

GPUs is an excellent way of ensuring future performance and scalability.  

The purpose of this research is to investigate the issues related to the implementation of next-generation 

manycore-accelerated heterogeneous Krylov solvers. We aim to find methods and algorithms able to exploit and 

provide the large level of fine-grained parallelism required by such processors, ways to reduce the necessary memory 

bandwidth and communication size and improve convergence. This thesis concentrates on two Krylov solvers: 

Conjugate Gradients (CG) method, the most used method for systems of linear equations which are symmetric and 

positive definite and Generalized Minimal Residual (GMRES) method, a very robust method for matrices which can 

be applied to general matrices. 

This research work is divided into four parts:  

1. finding/adapting the most appropriate methods that can provide both robustness and reduce the 

computational, memory and communication requirements 

2. writing a distributed GPU-accelerated solver package capable of running on multiple GPUs and on a GPU 
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cluster  

3. building a test-bed composed of a GPU cluster and using it to measure the performance and behavior of 

various solvers and 

4. use the acquired data in order to predict the behavior and issues encountered while porting Krylov solvers 

on large scale manycore clusters  

 

2. Mixed precision in Krylov solvers 
Krylov solvers require double precision accuracy (or larger) in order to converge. Though very recently 

native precision support has been made available on some GPUs, the vast majority supports single precision (32-bit) 

alone. Moreover, it is a hardware fact that double precision performance is at least two times slower than single 

precision on most architectures and an order of magnitude slower on some. In the future, when double precision will 

be fully supported on all accelerators, the same reasoning will apply to the difference between quadruple and double 

precision. As such, ways to make use of lower precision as much as possible, both due to lack of support or in order to 

accelerate the computation, have been devised. Ways of achieving that are iterative refinement and quasi-double 

precision. 

 

2.1 Iterative refinement  

Iterative refinement is an old and well understood method used to improve the accuracy of linear solvers by 

wrapping them in an outer correction loop. In a mixed precision formulation, one wraps a lower precision solver into a 

high precision correction loop. In this way one can get accurate high-precision results while doing most of the 

computation in lower precision. The use of iterative refinement accelerates the computation by reducing the amount of 

data that has to be transported between all levels of the system, starting from the memory subsystem of the GPU and 

up to the cluster interconnect. This is a very important aspect since the very high performance provided by 

GPU-accelerated nodes (and manycore-accelerated nodes in general) puts an unprecedented strain on the network 

interconnect.   

We investigated the convergence behavior under iterative refinement, where the solver is ran in single 

precision on the GPU while correction iterations are run in double precision on the GPU. Iterative refinement does not 

work if the matrices are too ill-conditioned. By using a collection of 60 matrices whose condition numbers, after 

diagonal preconditioning, have been computed directly from the CG method using Lanczos, the condition number 

threshold was found to be around 108. This is as expected, since the condition number acts as an amplifier for the 

rounding error and, for 8 digits of accuracy, as in the case of single precision, a condition number larger than 108 

would leave no single digit correct. The same error amplification explains another effect that we observed: the stalling 

of the iterative refinement after a certain threshold has been reached. We predicted the point of stalling has to be the 

“maximum possible” level of residual reduction, by which we understand the number of significant digits remaining 

after including the effect of the condition number.  

In order to be able to efficiently use iterative refinement, we proposed an algorithm which can automatically 

stop the solver before the previously mentioned threshold has been reached. This algorithm uses condition number 

estimation, performed directly from the Krylov solver, and outer residual monitoring. A similar algorithm has been 

developed in order to automatically choose the precision of the inner solver which, if not chosen well, will lead to a 

large increase in the number of iterations.  
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2.2 Quasi-double precision 

As opposed to mixed-precision methods in which a lower precision is chosen because it is faster, there are 

particular situations, like vast majority of GPUs, where the lower precision is all that is available. With the cost of 

many extra instructions, by combining two single precision numbers, it is possible to achieve a precision only slightly 

lower than double precision. For this reason, it was called quasi-double precision. 

Before native precision become available, by computing the difference between the bandwidth used in 

single and quasi-double precision for all operations involved in a CG solver, we concluded that all involved operations 

are so memory bounded that even an order of magnitude increase in the number of operations, as required for 

implementing the quasi-double precision, comes almost for free. Of course, this is also a consequence of the huge 

computational power of which current GPUs are capable of. These results were confirmed when native double 

precision become available on the GeForce 280GTX series. Since the analysis was based not on the solver itself but on 

all the operations involved, this conclusion can be generalized to most Krylov-space solvers, as the operations 

involved are almost the same. We have also confirmed that the difference between the solutions obtained in double and 

quasi-double precision is very small, at the order of maximum two digits.  

 

3. Solver design 
Implementing distributed multicore accelerated solvers in general is a complex task. Implementing a solver 

capable of running on heterogeneous clusters, with support for mixed precision, is very difficult without the right tools. 

Towards this goal, a solver package intended to ease the development of GPU-accelerated Krylov solvers, by 

abstracting out most of the difficulties encountered when dealing with GPUs, was created. Additionally, the 

implementation style required for using multiple GPUs makes it very suitable for multicore/manycore. To the best of 

our knowledge, there is currently no such tool available.  

The solver is designed as a stack. The first level provides a unified interface to various Basic Linear Algebra 

Subsystem (BLAS) libraries and a large set of performance counters. The second level defines vectors and matrices, 

which can hold data on both CPU and GPU and in various precisions (single, quasi-double, double, integer) and sparse 

formats. Data movement and conversion are automatically managed. The third level provides all the BLAS functions 

working directly on vectors and matrices, independent on the data format, location and BLAS libraries being used. 

The next four levels scale up this functionality to multiple GPUs/cores (levels 4-5) and multiple cluster nodes (levels 

6-7). Data synchronization and any kind of communication is automatically managed. Scaling to multiple cores is a 

side-effect of the necessity of dividing the work into multiple threads, as required for using multiple GPUs in parallel. 

All solver and preconditioner related but not method specific details, including the iterative refinement loop, form 

level 8. The actual solvers are implemented on top of this stack. As such, a solver implementation can work unchanged 

on one or multiple nodes, inside which it can run on one or multiple GPUs or CPU cores or a combination of the two, 

using any desired combination of data formats, precisions and BLAS libraries. Selecting the run configuration can be 

done very easily, usually using command-line options or simple API calls. 

 

5. Performance study 
In order to get a performance assessment as realistic as possible, tests were done on a collection of matrices, 

coming from various types of real-world problems, taken from Univ. of Florida's Sparse Matrix Collection. A CG and 
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a GMRES solver, both built on top of the proposed solver package were run on the previously presented CPUs and 

GPUs, in single precision with iterative refinement, quasi-double precision and double precision. Tests were run on 

several multicore CPU and GPU models. Scalability tests were done on a 5-node GPU cluster, with three GPUs in 

each node. The GPU cluster has been designed to be as close as possible to what an average researched might have. 

We also made sure the hardware is well balanced, so that useful measurements for modeling scalability can be made.  

Using the counters included in the solver, the performance for each piece of hardware was computed. 

Results were averaged over the entire collection minus the smaller matrices. Matrices were stored and operated on in 

Compressed Sparse Row (CSR) format. Great care has been taken to optimize the speed of the sparse-matrix vector 

multiplication routine, where most of the solver time is spent. Overall, the performance of GPU was up to an order of 

magnitude higher as compared to CPUs from the same generation. For three GPUs per node, up to 15x speedup has 

been achieved. Besides pure performance, we computed the number of Mflop/s obtained per used Watt and the cost in 

yen spent for each Mflop/s, on each architecture. It is worth noticing that GPUs excel in every category and that the 

MFlop/s in quasi-double precision, which can be had on relatively cheap GPUs, is by far the cheapest. 

 

6. Scalability 
Scalability for both solvers was analyzed both inside one node and on the cluster. Node level results show 

that, for matrices which involve lots of communication, even the fast PCIe interconnect can become a bottleneck. 

However, for the typical matrices found in finite element problems, the scalability is good. The same can be said for 

the entire cluster. However, by using a performance model, we found that the standard domain-decomposition 

approach does not scale well to many nodes. For larger systems the use of hierarchical methods might be a much 

better choice.  

 

7. Conclusions 
Motivated by the recent shift towards manycore architectures we studied the performance and other issues 

encountered while adapting Krylov solvers to multicore processors and GPUs. Iterative refinement and quasi-double 

precision were analyzed, and quasi-double precision on cheap GPUs was found to be by far the most cost efficient 

way of running Krylov solvers. As expected, GPUs scored the highest in performance, performance / Watt and cost / 

performance. This reinforces our belief that GPUs are a platform indeed worth exploring. Compared against CPUs 

released in the same period, using three GPUs in parallel provided up to 15x. 

As a tool for implementing and analyzing Krylov solvers we have created a portable and scalable solver 

development package. Many things were learned from the implementation of the solver package. First, we found the 

presence of a layer that automatically manages the movement and conversion of data between host and accelerators 

and between accelerators to be of particular importance. Since the host and all accelerators have different address 

spaces, using such a layer is as close as one can get to a shared memory system. Moreover, this makes code much 

easier to implement when dealing with many different precisions, as one does when using mixed-precision techniques. 

Second, we found that, as GPUs work so much faster than regular processors, not overlapping communication with 

computation leads in almost every case to large performance degradation. This happens even when working with 

multiple GPUs inside one node and communication over the fast and low latency PCIe connection. We have also 

found that for larger numbers of nodes, parallelization using domain decomposition does not scale well, and that 

hierarchical methods are required.  
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