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Introduction 

In eukaryotes, the activity of genes and their products is regulated on many levels. Regulation 

of transcription is the first step in the cascade of regulation, and as such it is of major 

importance in determining when, where (e.g., in which tissues), and under what conditions a 

gene is expressed. Since this process is controlled by transcription factor (TF) binding motifs 

in regulatory sequences, we can make the assumption that regulatory regions containing 

similar sets of motifs are bound by similar sets of TFs, and thus drive similar expression 

profiles. 

Here I present three studies on the analysis and modeling of the architecture of regions 

regulating the initiation of transcription. In these three studies, models are presented that 

aim at capturing some common structural features from promoter sequences that drive 

similar expression profiles. Subsequently, the trained models are used for finding other 

promoter sequences that share similar structural features and result in similar expression 

profiles. 

Results and Discussion 

1. A Markov chain-based promoter structure model 

In a first study, a Markov chain-based promoter structure model was introduced. The 

promoter sequences are divided into two regions, reflecting the positional preferences of 

regulatory sites with regard to the translation or transcription start site (TSS). Next, a first 

order Markov chain is constructed for each region, capturing order and orientation of the sites 

in each region. After training, the model is used to score a genomic set of promoter sequences. 

High-scoring promoters are assumed to have a structure similar to the input sequences, and 

are thus expected to drive similar expression patterns. Figure 1 shows a visual representation 

of the scoring process. 

First, we trained our model on a set of promoters driving expression in pharyngeal muscle 

cells in Caenorhabditis elegans. Using available annotation data we confirmed that 
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high-scoring non-input promoters were enriched for promoters driving expression in 

pharyngeal muscle cells (P-value = 0.0025) and in muscle tissue in general (P-value = 0.0072), 

illustrating the validity of the model. Second, we trained the model on a set of muscle-specific 

promoters in the sea squirt Ciona intestinalis. For four high-scoring non-input genes in situ 

hybridization experiments were conducted, confirming expression in muscle tissue for three of 

them. 

 

Figure Figure Figure Figure 1.1.1.1. The scoring process of the Markov chain-based promoter structure model. (aaaa): A 

promoter sequence to score. The squares represent predicted sites for motifs A, B and C, with 

‘+’ and ‘-’ indicating their orientation. Here, the boundary between the proximal and distal 

regions is set at -500 bp. (bbbb) and (cccc): The promoter model during the scoring process of the 

distal region and the proximal region, respectively. The states of the model are shown as 

circles. Each of the two regions has a ‘start’ and a ‘stop’ state, in addition to states for each 

motif type in both orientations. Arrows indicate transitions used during the scoring of the 

sequence shown in (a). Values of these transitions are captured in the Markov chains during 

training of the model.... 

2. A model based on simple rules on presence and positioning of motifs 

In a second study, structural rules were constructed concerning the presence of regulatory 

sites, their positioning relative to the TSS, and the relative positioning between pairs of sites. 

During training, a large number of such patterns are extracted from a set of training 

promoters. Subsequently, a Genetic Algorithm (GA) is used to select from this pool of patterns 

a small subset of highly meaningful patterns optimizing performance on a second set of 

training samples. This final subset of structural patterns represents our promoter structure 

model. 

A ten-fold cross-validation approach on muscle-specific promoters from C. elegans indicated 

that this model is capable of finding architectural patterns characteristic of muscle-expressed 
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promoters. On average 27.1% and 36.5% of muscle-expressed promoters scored higher than 

95% and 90% of the control promoters, respectively. In the best validation run, we found that 

almost 50% of muscle-expressed promoters scored higher than 90% of the controls promoters. 

A visual representation of the six structural patterns selected in this validation run is shown 

in Figure 2. The selected patterns contain a wide variety of structural information, and some 

motifs present in the patterns show similarity to known motifs of importance in 

muscle-specific regulation of transcription. High-scoring non-training sequences were 

enriched for muscle-expressed genes, and predicted regulatory sites fitting the patterns 

showed a tendency to be present in experimentally verified regulatory regions (P-value = 

0.0017). 

Figure Figure Figure Figure 2.2.2.2. A visual representation of the 6 

selected rules in the best cross-validation 

run for the C. elegans muscle promoter 

model. For each pattern, the sequence 

logo of the motif(s) and the nature of the 

pattern are shown.) 

 

 

 

 

 

 

 

3. A large-scale analysis of tissue-specific promoter structures 

Finally, we applied an updated version of the rule-based model described above on 26 human 

and 34 mouse tissues. In this updated version, the GA does not only select a subset of 

structural patterns, but it also assigns a weight to each pattern, reflecting its importance. 

Promoter structure models were constructed for each tissue, and ten-fold cross-validation was 

used to evaluate the ability of each model to distinguish positive test samples from control 

promoter sequences. As measures for performance, the Area Under the Curve (AUC) of 

Receiver Operating Characteristic (ROC) curves, and the sensitivity at 90% and 95% 

specificity were used. 

We found that the models had statistically significant performance in 35 out of 60 tissues. 

Models with high performance include those for tongue, (fetal) liver, kidney, and skeletal 

muscle. Table 1 shows an overview of the five best performing human promoter models. 
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Further analysis of the important structural patterns in these models revealed that many 

involve TFs known to be of importance in the tissues in question, such as HNF1 and HNF4 in 

liver promoter models, and MEF2 in skeletal muscle promoter models. In addition, we found 

that promoter models of a tissue in one species tend to have high performance when applied 

on promoter sequences of the same tissue in the other species. For example, the human 

kidney promoter models are able to recognize mouse kidney-specific promoter sequences, and 

vice versa. Finally, promoter models of related tissues, such as liver and kidney, tend to have 

high inter-tissue performance. 

 

DescriptionDescriptionDescriptionDescription    
Size Size Size Size     

(No. of seqs)(No. of seqs)(No. of seqs)(No. of seqs)    

AUC value AUC value AUC value AUC value 

(P(P(P(P----value)value)value)value)    

SensitivitySensitivitySensitivitySensitivity at  at  at  at 

95% specificity95% specificity95% specificity95% specificity    

Sensitivity at Sensitivity at Sensitivity at Sensitivity at 

90% specificity90% specificity90% specificity90% specificity    

tonguetonguetonguetongue    76 0.81  ( < 6.0x10-5 ) 0.46  0.58  

fetal liverfetal liverfetal liverfetal liver    89 0.79  ( < 6.0x10-5 ) 0.28  0.39  

kidneykidneykidneykidney    95 0.71  ( < 6.0x10-5 ) 0.20  0.30  

skeletal muscleskeletal muscleskeletal muscleskeletal muscle    67 0.70  ( < 6.0x10-5 ) 0.21  0.35  

liverliverliverliver    276 0.68  ( < 6.0x10-5 ) 0.24  0.34  

Table 1. Overview of the five best performing human models. A description of each dataset, 

the number of promoter sequences it contains, the average AUC value of the ROC curves 

obtained form the 10 cross-validation runs, and a corrected P-value for this value is shown. 

Finally, the sensitivity at 90% specificity and 95% specificity is shown. 

Conclusions 

We introduced two approaches for modeling tissue-specific promoter architectures. 

Predictions of the Markov chain-based model were validated using available annotation data 

and experimental results. In a second approach, a GA was used to select a small set of simple 

rules on the presence and positioning of regulatory sites in tissue-specific promoter sequences. 

Both models are capable of capturing a wider variety of structural features, compared to 

cis-regulatory module-based models. The third study showed that such features can be used 

to model tissue-specific structural features on a large scale in higher eukaryotes. We believe 

that our approaches can be useful for finding promising candidate genes for wet-lab 

experiments, and for increasing our understanding of the regulation of transcription. 


