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One of the most fundamental problems in theoretical physics in the 21st century is to 

construct a theory of quantum gravity. General relativity and quantum mechanics, 

which are the cornerstones of the 20st century physics, are mutually inconsistent. We 

need a theory of quantum gravity which unifies the two in a consistent framework. 

Over decades string theory has been the most promising candidate for quantum 

gravity. One of the most successful predictions of string theory, as shown by Strominger 

and Vafa in 1996, is that string theory correctly reproduces the Bekenstein-Hawking 

entropy of a class of supersymmetric, extremal black holes. In statistical mechanics, 

entropy is given by the logarithm of the number of states, and Strominger and Vafa 

showed that string theory reproduces the correct number of states. Their analysis has 

subsequently been generalized to many other black holes. In particular, string theory 

now reproduces not only the semi-classical Bekenstein-Hawking entropy of general 

relativity, but also the subleading contributions coming from the higher curvature 

corrections to the Einstein-Hilbert action. This gives a rather remarkable check of 

string theory as a theory of quantum gravity. 

However, there are many issues that remain to be solved. For example, the entropy is 

typically determined only by the asymptotic growth of the microstate degeneracies, in 

the limit of charge charges. However, we hope that string theory gives a more complete 

and detailed theory of the microstates, not just their asymptotic growth. This will lead 

to rich and yet unknown aspects of quantum gravity. 



A related question is geometry at the planck scale. One of the key ideas in general 

relativity is the `”geometrization of physics”, where the physics notion (e.g. mass) are 

translated and reformulated in terms of geometry (e.g. curvature). If we follow a similar 

path, the central question in quantum gravity is to identify the ``quantum geometry'', 

geometry at the planck scale. 

In this thesis, we will make small steps towards these ambitious goals. Unfortunately, 

solving string theory in gravity backgrounds is a notoriously difficult problem. The 

strategy we take is to simplify the problem --- to replace the problem of gravity by a 

problem of gauge theory. In string theory compactifications, this corresponds to taking 

the Calabi-Yau manifold to be non-compact. Of course, the notion of black hole is subtle 

in this limit since the gravity decouples in this limit and the Newton constant becomes 

zero. However, part of the important data in gravity theory still remain. For example, 

we can still discuss entropy of black holes since we can take a scaling limit where the 

mass of the black hole goes to infinity, thus the entropy is kept finite. The counting of 

black hole microstates is now turned into a counting problem of BPS states in 

supersymmetric gauge theories.  

The counting problem of BPS states in string theories and supersymmetric gauge 

theories is an important problem, even if we forget about the motivation from black hole 

physics. For example, they provide primary tools to test various string dualities. BPS 

solitons in supersymmetric gauge theories has a rich structure, and provides a classic 

example of fruitful collaboration between physics and mathematics. Furthermore, as we 

will see in later chapters there is an intimate connection with another counting problem 

in string theory, the topological string theory. 

In the first part of this thesis, we show that when X is a toric Calabi-Yau manifold 

(roughly meaning that X has an action of the three-dimensional torus), we can give 

explicit answers to the BPS counting problem. More precisely, each of the BPS states 

contributing to the BPS index (defined in section 2.1) is in one-to-one correspondence 

with a configuration of a molten crystal, and the BPS partition function ZBPS (defined in 

section 2.1) is the same as the statistical partition function of a crystal melting model: 

ZBPS=Zcrystal. 

Chapter 3 is devoted to the explanation of this these results. Remarkably, the 

derivation of the above formula depends on the newly developed mathematical theory, 

the non-commutative Donaldson-Thomas theory. The theory gives a new invariant for 

Calabi-Yau manifolds, which exactly coincides with the BPS index we are interested in. 

This means that BPS counting problem is important not only to physicists but also the 

mathematicians alike. 



In the next chapter (chapter 4), we discuss the implication of these results to 

quantum gravity. We show that the thermodynamic limit of the crystal gives a 

projection of the shape of the mirror of the Calabi-Yau manifold. This in particular 

suggests that if we start from classical smooth geometry and approaches to the planck 

scale, the geometry gets discretized into a set of atoms. In this sense an atom in the 

crystal melting model is an ``an atom of space'', a discretized version of the geometry at 

the planck scale. We therefore see that the two problems posed earlier are now related. 

Each of the microstate, which is an atom of the crystal, is the discretized version of the 

geometry; thus the problem of identifying black hole microstates is solved by the 

quantum structure of geometry! 

In the second half of the thesis, we move on to the discussion of the wall crossing 

phenomena (see section 2.2 for introduction). Wall crossing phenomena states that the 

BPS degeneracy jumps as we change the value of the moduli of the Calabi-Yau manifold. 

Wall crossing phenomena, first discussed by Cecotti and Vafa in the context of 

supersymmetric N=(2,2) theories in two dimensions, has a long history of more than 

nearly two decades. They also play important roles in the Seiberg-Witten theory and its 

stringy realization. In these old days, it was observed that we can derive the jump of 

BPS states in simple cases, but generalization seemed to be difficult. 

The recent breakthrough was triggered by the paper of Kontsevich and Soibelman, 

who proposed a rather general formula for the jumps of BPS degeneracies, generalizing 

the results of Denef and Moore. Physical interpretations of the formulas were 

subsequently given. In chapter 6 we discuss these formulas in detail. 

The wall crossing formulas can be applied to our setup, namely compactfication on the 

toric Calabi-Yau manifold. In particular, the example of the resolved conifold is analyzed 

in Jafferi-Moore and independently in Nagao-Nakajima. There it was shown that the 

non-commutative Donaldson-Thomas invariants discussed in chapter 3 is related by 

wall crossing to the commutative (ordinary) Donaldson-Thomas invariants. In physics 

language, this means that the crystal melting partition function is related by wall 

crossings to the topological string partition function. This clarifies the connection of our 

crystal melting model and another crystal melting model, which describes the 

topological vertex. 

However, this is not the end of the story. First, it was observed that the BPS partition 

function computed by the wall crossing formulas takes a beautiful infinite product form, 

and there should be an intuitive explanation of these results. From the viewpoint of 

non-commutative Donaldson-Thomas theory, this seems miraculous: we first compute 

the BPS indices separately by going through complicated mathematics, and only after 



summing up all of them and going through combinatorics can we see that the partition 

function takes such a simple form. Moreover, it was not clear why the topological string 

theory can be related to the BPS degeneracies. Finally, as physicists we want to have an 

independent way of deriving the results from purely physics arguments, without relying 

on the mathematical results. 

This is the reason why I was motivated to give a simple derivation of the wall crossing 

phenomena from M-theory, which is the topic of chapter 5. By lifting type IIA brane 

configurations to M-theory and by using the 4d/5d correspondence, the problem of 

counting BPS states is mapped (under certain conditions explained in section 5) to a 

counting problem of free M2-brane particles in five dimensions, which span the free 

particle Fock space. This naturally explains the infinite product form of the BPS 

partition function. Also, the counting problem of M2-brane particles is a generalization 

of the Gopakumar-Vafa argument, which explains the appearance of the topological 

string partition function. More precisely, we prove a formula 

ZBPS= Ztop 2 |chamber. 

The argument here is consistent with the derivations from the wall crossing formula. 

The bonus is that we have new mathematical predictions for non-toric examples, which 

can be tested by future mathematical developments. 

There is a generalization of the above-mentioned story to the case of open BPS 

invariants. Closed BPS invariants discussed up to this point are defined by counting 

D2-branes wrapping on 2-cycles of the Calabi-Yau manifold. Open BPS invariants are 

defined by counting D2-branes wrapping disks ending on another D-branes (D4-branes). 

Open BPS invariants are natural generalizations of closed invariants. Moreover, they 

give a useful computational tool to study closed invariants for complicated geometries, 

as the topological vertex formaslim shows.  

In chapter 7 we first give a definition of the “non-commutative topological vertex”, 

which gives a basic building block for computing open BPS invariants. The definition 

uses the crystal melting model, and we perform several consistency checks of the 

proposal. We also discuss the wall crossing phenomena for the open BPS invariants both 

with respect to the open and closed string moduli, by again using the viewpoint of 

M-theory. 

BPS state counting and wall crossing phenomena are still very active areas of 

research, and has been attracting more and more attention from researchers since I 

started research. In the final chapter 8, we close this thesis by pointing out some 

interesting problems which suggest directions for future research. We also collect 

slightly technical results in the appendices. 


