論文の内容の要旨

論文題目 ボロン系正 10 角形準結晶と関連物質の構造と物性に関する研究

1. 序論

準結晶は5回、10回などの従来の結晶学では許されない回転対称性を持つ、非周期の秩序構造物質であり¹、結晶およびアモルファス固体と並び立つ固体物質の一形態である。これまで金属元素を主体とする合金系では熱力学的安定相を含め多くの準結晶が見つかっているが、非金属元素系の準結晶はほとんど物性研究の対象となっていない。ボロン単体(α菱面体晶、β菱面体晶等)は正20面体クラスターを構造単位とし、またその化合物にも正20面体や正5角形といったクラスター構造を持つものが多く存在するためボロン系準結晶の存在が期待され、探索が行われてきたが、これまでに準結晶発見の報告は無かった。

2004 年、BMgRu 合金系の安定または準安定な正十角形準結晶 ²の存在が理論的に予測された³。B₄Mg₂Ru₅(α)および B₁₁Mg₅Ru₁₃(β)⁴は正 10 角形準結晶の近似結晶⁵(準結晶と共通の 単位構造を周期的に配列した結晶)と解釈できる。図 1(a), (b) に HAADF-STEM 像(後述)と原子構造を示した((a)は同じ構造をも つα-BTiRu)。白実線で示される六角形(*H*)と舟形(*B*)の、2 種類の 基本単位構造の周期配列として記述される。これに星型(*S*)のタイ ルを加え、一定の規則に従って隙間なく配置すると、図 1(c)に示 した *HBS*型正十角形準結晶が得られる。

図1 (a)B₄Ti₂Ru₅ (α), (b)B₁₁Mg₅Ru₁₃ (β)の HAADF-STEM 像:いずれ も既知の構造をもった近似 結晶。(c)理想的な正十角形 準結晶 (HBS 型)のタイリン グ これらの準結晶・近似結晶は、構造、構成元素ともこれまでに知られていたものとは全く異なる。本研究の目的は BMgRu および周辺合金系において準結晶および新たな近似結晶を探索すること、また構造解析と物性の基礎的な測定を行い、第一原理計算により求めた電子構造と合わせて構造安定化機構や輸送物性を議論することである。

2. BTiRu 急冷合金中の正十角形準結晶

BTiRu系で液体急冷法による合金試料の試料作製を行った。石英の軟化点よりも高い融点を持っため、アーク溶解法を用いた特別な急冷装置⁶を用いた。得られた急冷合金をTEMで観察したところ、B₄₀Ti₁₂Ru₄₈の試料から準結晶に極めて近い電子回折図形が見出された(図2)。ピーク位置、強度は十回対称的であり、τ倍の自己相似性を持つ。しかしながら構造完全性の高いAl系正 十角形準結晶の電子回折図形と比較してピークの数は少なく、散漫散乱が強い。

原子構造を直接観察するために HAADF-STEM (High angle annular detector Dark Field Scanning Transmission Electron Microscopy)を用いた。像の明るいコントラストと原子カラムの位置とが直接1対1に対応し、その強度が原子番号 Zの2乗に比例する Z-contrast 像であり 7、原子構造を直接に把握することができる。B₄₀Ti₁₂Ru₄₈合金の HAADF-STEM 像は図 3(a)の通り 非周期構造を示し、フーリエ変換図形(図 3 左上)は 10 回対称的なスポットの配列となった。図 3(b)で示す通り H と B に加え S のタイルが確認され、これらのタイルを隙間なく配列した非周期 の構造である。直径約 1.4nm の正 10 角形の骨格を持つクラスター(図 3(c))が生成している。高次 元結晶学を用いた解析によると、直交補空間における格子点の分布は理想的な準結晶格子のそれ を大きく逸脱しており、準周期格子に多くのフェイゾン(タイルの入れ替わり)を導入した構造 として記述される。以上の特徴から、構造完全性は低いものであるが、準結晶構造が生成したと 結論できる。

図 2 B-Ti-Ru 合金中の 10 回対称的な電子回折図形

図3 B-Ti-Ru 急冷合金の HAADF-STEM 像。(a)左上はフーリエ変 換パターン。(b), (c)は一部を拡大し、タイリングモデルと原子構造 をかさねたもの。(d)はより広い範囲でタイリング構造を書き出し たもの。* は、例外的なタイルである。

3. BMgRu および BTiRu 近似結晶の作製と構造解析

3.1 BMgRu 系新型近似結晶の発見

B-Mg-Ru 系における高温での試料合成によって新たな近似結晶を4種類発見した。Mo 管にア ルゴン封入した B, Mg, Ru それぞれの単体粉末の混合物を、α-およびβ-BMgRu の生成温度(1050℃) より高い 1400℃で熱処理することで合金試料を作製し、TEM によって回折図形を撮影したとこ ろ、従来の2種類(αおよびβ)の近似結晶を含む、6種類の回折図形が得られた(図 4)。いずれも擬 10回対称的な位置に強い反射が現れる特徴がある (図の矢印)。これは局所構造の擬 10回対称性 を示し、正 10 角形準結晶の近似結晶として記述できることが予想される。それぞれについて B と*H*をもちいた周期的タイリングによる構造モデルを作成し、HAADF-STEM像の原子構造直接 観察でモデルの妥当性を確認した。

3.2 BTiRu 系近似結晶の単相試料作製と構造解析

これまでにBTiRu系で作製した急冷合金では、試料の不均一さゆえに準結晶は試料中の極わず かにとどまり、その安定性や詳しい構造は分からない。準結晶が発見されたB-Ti-Ru急冷合金中に は、同時に多様な近似結晶の電子回折図形が観察された。B-Ti-Ru系における安定相の抽出と、準 結晶の理解に欠かせない近似結晶の構造解析を目的とし、単相試料の作製を試みた。

BおよびRuは高融点の物質で拡散速度が遅いので、本合金系で従来均質な試料を得るのは困難 であったが、SPS(放電プラズマ焼結法)により均質化に成功した。試料の相同定および構造解析に、 Cu-Kα特性X線を用いた粉末X線回折、TEMによる電子線回折を行った。また、TEMおよびSEM を用いて組織観察とEDX(エネルギー分散型X線)組成分析を行った。

合成の結果 α , δ , ζ のほぼ単相の試料を得た。準結晶は生成せず、これらの3つの相が試料作製 した組成範囲内での1400℃における安定相であり、準結晶は安定相ではないと推定できる。電子 回折図形と HAADF-STEM による原子構造の直接観察からモデルを作り、粉末 XRD パターンを Rietveld 法により解析したところ、 α は B₄Mg₂Ru₅⁴と同じ構造で2方向のHのみ、 ζ は2方向のBのみ、 δ はBとHからなる非常に複雑な近似結晶であることが示された(図5)。

EDX 組成分析と Rietveld 解析による構造精密化の結果、理想モデルの *B* および *H* を用いた場合と比較して(ζ相で Ti/Ru=0.38)、Ru に対する Ti の割合が少なく (同じく Ti/Ru=0.27)、一部 Ti サイトが部分的に Ru に置き換わっていることが示された。Ru と Ti では化学的性質、原子半径に差があるため、このような置換は予測されていなかった。

図 4 B-Mg-Ru 系近似結晶の電子回 折図形。いずれも擬 10 回軸入射。

図5 Rietveld 法により精密化された B-Ti-Ru 系近似結晶の2次元構造図。

4. 近似結晶の電子構造計算

FLAPW(Full potential Linearized Augmented Plane Wave) 法のパッケージプログラム Wien2k を用いて第一原理計 算を行い、近似結晶の電子の状態密度分布を求めた。 い ずれの計算結果においてもフェルミ準位近傍で状態密 度に幅 1eV 程度の擬ギャップ(0 でない落ち込み)を生じ た。

ζ-BTiRu について、モデルの組成ではフェルミエネル ギーの擬ギャップ極小からのずれが大きく、このままで は電子が過剰に見える。構造解析・組成分析の結果の組 成に合わせて、リジッドバンド的にフェルミエネルギー を移動させると擬ギャップの極小部分にちょうど一致 する(図の点線)。従来の準結晶・近似結晶は一般にフェ ルミ準位が状態密度の擬ギャップ中に位置するように 組成が調整され安定化しているとされる(ヒューム=ロ ザリー則)⁸。本研究の結果は、ボロン系近似結晶の安定 化がヒューム=ロザリー則によることを示唆するもので ある。

5. 近似結晶の輸送物性測定

BTiRu 系近似結晶α,δ,ζについて、低温(300K~20K)での 電気抵抗率、高温(300K~1000K)での電気抵抗率およびゼー ベック係数を測定した。電気抵抗率の温度依存性はいずれの 相も金属的となったが、傾きは小さく、300Kから 20Kまで の減少率は10-20%程度であった。α相のゼーベック係数は組 成依存性が大きく、0に近い値から-20μV/Kまで変化した。 擬ギャップ中の DOS の傾きの変化率の大きな部分をフェル ミエネルギーが動いたためと解釈でき、擬ギャップ構造を持 つ物質の特徴と捉えられる。

図 7 FWAPW 法バンド計算 (Wien2k) による近似結晶の全 電子状態密度。

6. まとめ

B-Ti-Ru 系で液体急冷を行い、ボロン系で初めてとなる準結晶を作製してその構造的特徴を議論した。これまで3元系化合物の知られていなかった B-Ti-Ru 系において、近似結晶α,δ,ζを単相で作製し構造解析を行った。フェルミエネルギー付近に擬ギャップを持つことを第一原理計算によって示し、これらの相の安定性について電子価安定化合物としての解釈を行った。ゼーベック係数をはじめ輸送物性の測定を行い価電子濃度によって物性が大きく変化する特性を明らかにした。

- [1] D. Levine and P. J. Steinhardt: Phys. Rev. Lett. 53, 2477 (1984).
- [2] L. Bendersky: Phys. Rev. Lett. 55, 511 (1985)
- [3] M. Mihalkovič and M. Widom: Phys. Rev. Lett. 93, 095507 (2004)
- [4] K. Schweitzer and W. Jung: Z. Anorg. Allg. Chem. 530. 127 (1985)
- [5] C. Henley and V. Elser: Phys. Rev. Lett. 55, 511 (1985)
- [6] Y. Yokoyama, K. Fukaura and A. Inoue: Intermetallics 10, 1113 (2002)
- [7] S. J. Penycook and D. E. Jesson: Ultramicroscopy 37, 14 (1991)
- [8] U. Mizutani et al.: Progress in Materials Science 49, 227-261 (2004)