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Motivated by recent experiments of graphene, such as quantum Hall effects
near zero energy with half-filling in a magnetic field and a uniaxial strain in
graphene, we examine the tight-binding model of the honeycomb lattice in the
following three aspects:

(A) Anisotropy of the hopping integrals in a magnetic field.

(B) Incommensurate effects between the lattice and the magnetic field.

(C) Topological stability of the edge states under non-Hermiticity.

(A) First, we perform systematic study of states with zero energy (zero
modes) and energy gaps by introducing effects of anisotropy t of hopping in-
tegrals for a tight-binding model on the honeycomb lattice in a magnetic field
2πΦ = 2πp/q (p and q are mutually prime integers) as illustrated in Fig. 1. The
condition for the existence of zero modes is analytically derived: Zero modes ex-
ist for t ≤ 21/q, and a gap around zero energy opens for t > 21/q. For t < 2, a gap
∆E around zero energy in a weak magnetic field behaves as a non-perturbative
and exponential form as a function of the magnetic field: ∆E ∼ exp(−α/Φ)
with constants α depending on t as shown in Fig. 2. The non-perturbative be-
havior with respect to the magnetic field can be understood as tunneling effects
between energy levels around two zero modes with linear dispersion (Dirac zero
modes) appearing in the honeycomb lattice, and for t ∼ 2 an explicit form of
the gap around zero energy is obtained by the WKB method near the merging
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Figure 1: The honeycomb lattice. The hopping integrals of the horizontal bonds
are t, and those for the other bonds are 1. A magnetic flux 2πΦ is applied
through the unit hexagon.
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Figure 2: (a) Energy bands as a function of Φ for t = 1.5. (b) The natural
logarithm of the gap ∆E around E = 0 as a function of 1/Φ for t = 1.5.
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Figure 3: Scaled plots of local charge densities qIn as functions of coordinates
n/q for Φ = 1/11, 1/17, and 1/21. (a) t = 0.97, (b) t = 1.0, (c) t = 1.07.

point of these Dirac zero modes as

∆E ' 4
√

ΦG exp
(
− 2G3

3πΦ

)
, G =

√
2− t. (1)

Effects of the anisotropy for the honeycomb lattices with boundaries are also
studied. The condition for the existence of zero energy edge states in a magnetic
field is analytically derived. On the basis of the condition, it is recognized that
anisotropy of the hopping integrals induces abrupt changes of the number of
zero energy edge states, which depend on the shapes of the edges sensitively
(see Fig. 3).

(B) We also study incommensurate effects between the lattice and the mag-
netic field, which are realized by taking the magnetic flux Φ to be an irrational
number. From the examination of the sum of the band widths and multifractal
analysis of energy spectra, a phase diagram of a localization problem is proposed
as Fig. 4, where the values of the hopping integrals t are varied. Especially, the
graphene (the isotropic honeycomb lattice) is found to correspond to a phase
transition point of the localization problem. The proposed phase diagram is
also supported by multifractal analysis of wavefunctions. At the same time,
specialty of zero energy states is rediscovered for the graphene case.

(C) In addition to the above-mentioned Hermitian systems, we also consider
non-Hermitian systems. Topological stability of the edge states is examined
in the presence of decay of wavefunctions or asymmetry of the hopping inte-
grals due to non-Hermiticity. For several non-Hermitian extensions of spin-Hall
systems, gapless edge states are found under small non-Hermiticity. They are
topologically protected by spin Chern numbers for time-reversal operators Θ
with Θ2 = +1 (see Fig. 5). We also examine graphene with decay of wavefunc-
tions. Edge states with ReE = 0 appear in this model, and their topological
stability is explained by winding numbers.
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Figure 4: Proposed phase diagram for quasiperiodic systems obtained from
honeycomb lattices in an irrational magnetic flux. For 0 < t < 1, states are
localized in the x direction and extended in the y direction. In critical I (I’)
phase for t = 1 and critical II (II’) phase for t > 1, energy spectra and wave
functions are multifractal.

According to multifractal analysis of energy spectra, the critical I (I’) phase
for t = 1 is proposed to belong to the same universality class as that of the
isotropic triangular lattice. On the other hand, the critical II (II’) phase for
t > 1 is proposed to belong to the same universality class as that of the isotropic
square lattice.
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Figure 5: Gapless edge states brought by spin Chern numbers for time-reversal
operators Θ with Θ2 = +1 in non-Hermitian systems.
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