
論文の内容の要旨

 Compiler Optimizations for Coarse Grained Reconfigurable Architectures (CGRAs)

（粗粒度再構成可能アーキテクチャのためのコンパイラ最適化）

ラトナ クリシュナムルティ

Reconfigurable Architectures are those which exploit a higher degree of spatial
computation. Typical examples of these include Field Programmable Gate Arrays (FPGA).
However, to run an application on an FPGA the number of resources on the FPGA must be
sufficient to spatially accommodate them at the same time. Thus emerged a new
architecture called Coarse Grained Reconfigurable Architecture (CGRA). CGRA was
designed from scratch to have low reconfiguration overhead. This was achieved partially
through the use of Coarse Grained building blocks instead of LUTs. Also CGRAs
supported loading multiple contexts simultaneously to reduce the reconfiguration overhead.
This meant that the fabric of the CGRA performed spatial execution of instructions within
one configuration and was temporally multiplexed between several configurations. Further,
unlike FPGAs, CGRA supports programming in high level languages viz. C. The spatio-
temporal nature of execution in CGRAs makes the task of application compilation quite
challenging, since they need to address both the spatial and temporal aspects of execution.

In this thesis, we develop a few compiler techniques which can be applied in the context of
CGRAs, with an aim to reduce the total execution time. The total execution time on a
CGRA includes the reconfiguration time i.e. the time spent in sending the configuration
data before the execution starts and the instruction execution time i.e. the actual time it
takes to execute a task on the fabric. We propose three different techniques to reduce the
total execution time, which includes the reconfiguration time and the instruction execution
time. Our work primarily focuses on those aspects of compilation which are unique to the
spatio-temporal execution paradigm. We present the results for all these compiler
optimizations in the context of CGRA called REDEFINE, which we use as our testbed.
REDEFINE uses static dataflow on the execution fabric and dynamic dataflow to
orchestrate various application sub-structures on to the execution fabric. The use of
dynamic dataflow is different from previous CGRAs and makes orchestration logic simpler
in hardware. REDEFINE also supports the use of custom function units to accelerate
kernels. This is supported programmatically through the use of extern function calls. The
performance of this CGRA is good and performs 10-15x times better than a General
Purpose Processor.

Compilation on CGRAs involves two different aspects. One to determine the application
sub-structures which are to be temporally multiplexed on to the fabric. The application
substructures then need to be executed on the fabric through appropriate spatial placement,
so as to reduce communication overhead. In REDEFINE, the application sub-structure too

is spatio-temporally executed on the fabric. This is done since over-allocating resources,
more than the available instruction level parallelism is wasteful. So application
substructures are partitioned, such that each partition containing several instructions are
mapped to the same compute element. The compute element executes these instructions
sequentially based on the availability of data. The task of partitioning is governed by the
opposing forces of being able to expose as much parallelism as possible and reducing
communication time. We extend Edge-Betweenness Centrality scheme, originally used for
detecting community structures in social and biological networks, for partitioning
instructions of a dataflow graph. We also implement several other partitioning algorithms
from literature and compare the execution time obtained by each of these partitioning
algorithms in the context of REDEFINE. Centrality based partitioning scheme outperforms
several other schemes with 6-20% execution time speedup for various Cryptographic
kernels. Centrality performs well on account of the appropriate choice of edges and use of a
larger number of partitions. Further, we observe that these partitions tend to be unbalanced.
Unbalanced partitions help reduce the perceived reconfiguration time by overlapping it
with instruction execution. However, the use of unbalanced partitions is not beneficial in all
cases and this observation was made in the context of two applications. We extend
centrality based partitioning scheme to produce balanced partitions. We observe that the
new scheme has the ability to improve performance up to 15% (over and above the
Centrality scheme). REDEFINE using centrality based partitioning performs 9x times
better than a General Purpose Processor, as opposed to 7.76x times better without using
centrality based partitioning. Similarly, centrality improves the execution time comparison
of AES-128 Decryption from 11x times to 13.2x times.

After the application sub-structures are partitioned, these partitions need to be appropriately
placed on the fabric to minimize communication latency. This task is carried out by the
mapping algorithm. We propose to demonstrate an interconnection independent mapping
algorithm based on greedy and local search based heuristics. Unlike previous work, we
experiment with several objective functions and evaluate the best possible mapping
algorithm in the context of balanced centrality and centrality based partitioning algorithms.

It is observed that the orchestration of application substructures can take as much time as
the execution of the instructions. These application substructures are sequenced based on
data and control dependences. Substructure prefetching is used in CGRAs to hide the
reconfiguration time while another substructure executes. In REDEFINE, these application
substructures are referred to as HyperOps. Determining the successor for a HyperOp
requires merging information from the control flow graph and the HyperOp dataflow graph.
A new data structure called Control-Data Interaction Graph has been developed. The CDIG
captures control and data interactions across HyperOps. Succession in many cases is data
dependent. Since hardware branch predictors cannot be applied due to the non-binary
branches, we employ a speculative prefetch unit together with a profile based prediction
scheme. The results of profiling are annotated on the CDIG. Based on the results the
successor HyperOp is selected. The prefetch unit was implemented in the simulator as a
look up table. Every time a HyperOp is scheduled, a look up is performed to determine the

next most likely successor. The most likely successor is prefetched, but instruction
execution is delayed until the point the decision is made. If the prediction is correct then the
data is transferred. In case of a misprediction the HyperOp's allocation on the fabric is
revoked. The misprediction penalty is typically four clock cycles. Simulation results show
around 7-33% reduction in overall execution time, when compared to the overall execution
time without prefetching.

In conclusion, we have proposed three different techniques to improve the performance of
CGRAs. All of these techniques have been shown to give good results in the context of
REDEFINE. However, these techniques are generic and can be applied to any CGRA.

