Adiponectin Supports Cell Survival in Glucose Deprivation Through the

Enhancement of Autophagic Response in Colorectal Cancer Cells

(アディポネクチンはグルコース欠乏状態でのオートファジーを増強することにより、 大腸癌細胞の生存を助長する)

北山 丈二準教授 東京大学大学院医学系研究科 平成19年4月入学 医学博士課程 外科学専攻 ベイカー (シャラル) ハビーブ

Baker (Shalal) Habeeb

Abstract

Adiponectin is known to have suppressive effects on tumor growth and is thought to be a key molecule in the positive correlation between obesity and cancer. However, the detailed mechanisms regulating tumor cell activity have not been elucidated. In this study, I found that both full-length (f-Ad) and globular adiponectin (g-Ad) inhibited cell growth in colon cancer cell lines in glucose-containing medium, whereas it supported cell survival in glucose-deprived medium, with an increase in AdipoR1 and AdipoR2 expression. The latter effect of adiponectin in glucose deprivation was significantly inhibited by adding autophagy inhibitors, chloroquine, 3-MA or a combination of pepA and E-64d, suggesting that the effect to support cell growth was dependent, at least in part, on the induction of autophagy. The enhancement of autophagy was confirmed morphologically using GFP-LC3 fusion proteins under a fluorescence microscope using stably transfected DLD-1 cells expressing GFP-LC3. Western blot analysis revealed that

adiponectin increased the expression of LC3-1, LC3-2, phosphorylated AMPKα and PPARα but decreased that of phosphorylated mTOR, IGF-1, phosphorylated Akt and phosphorylated PI3K in glucose-deprived medium. I conclude that adiponectin supports cell survival in glucose deprivation through enhancement of the autophagic machinery by AMPKα and PPARα activation and IGF-1/PI3k/Akt/mTOR pathway inhibition. The bimodal effects of adiponectin are thought to be clinically important in the pathophysiology of tumor development and progression.

Abbreviations:

(AMPK) adenosine monophosphate-activated protein kinase, (mTOR) mammalian target of rapamycin, (f-Ad) full-length adiponectin, (g-Ad) globular adiponectin, (CQ) chloroquine, (pepA) pepstatin A, (3-MA) 3-methyl adenine, (LC3) microtubule-associated protein 1 light chain 3, (GFP) green fluorescent protein, (PPAR) peroxisome proliferator-activated receptor, (IGF-1) insulin like growth factor, (Akt) serine/threonine kinase, (PI3K) Phosphatidylinositol 3-kinase.