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Abstract 
The majority of noise-filtering algorithms available in the literature 

assume that the nature of the noise and its statistical parameters are 

known a priori. Whereas in most practical applications, we have no 

accurate information on the type of noise present in an image. This 

pre-processing phase, prior to noise filtering, the present work positions 

itself. The output of this system can then be used to influence or tweak any 

subsequent noise filtering. Automatic Noise Type Determination 

essentially means, research into methodologies that automatically analyze 

an image and then determines what is the type of the most predominant 

video noise in that image and returns an output such as an ‘A, B or C’ type 

of answer. In addition, an estimate of the intensity of the strongest noise is 

also suggested. Then, armed with this information, the most appropriate 

noise filter can then be applied to the image to clean it in the best way 

possible. What’s more, using the estimated intensity the noise filter can be 

adjusted depending on how strongly the image is corrupted. One of the 

major concerns when identifying the type of noise dominant in an image is 

that some types of noise are content-dependant, and some are 

content-independent. In other words, the data of the image itself can in 

some cases influence the intensity of the noise. The easiest way to imagine 

this is to compare additive noise with multiplicative noise. In the case of 

additive noise, the resulting corrupted pixel is simply distorted by an offset, 
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however in the case of multiplicative noise as the pixel’s value approaches 

zero, the same noise signal will have less effect on that pixel whereas as 

the pixel’s value increases towards 255, the same noise signal multiplied 

by 255 will be greatly increased. Therefore, with these difficulties in mind, 

a modular strategy was developed using several specialized “expert 

systems” designed to analyze an image and look for certain features and 

determine the intensity of one specific noise type and can also provide a 

certainty factor. So that once the complete system is assembled, a “best 

guess” with an estimate at the noise level present in the image is produced. 

The architecture is divided in two sections, one covering 

content-independent noise types such as Additive White Gaussian Noise 

(AWGN) and Random Impulse Noise (RIN). The second section covers 

content-dependant noise types such as Motion Blurring Noise (Blur) and 

JPEG Compression Artifacts (JPEG). For each of these types of noise a 

dedicated “expert system” was developed to determine the intensity of that 

specific type of noise. The first category, considering content-independent 

noises, a kind of “unity” measure was then developed. In order to consider 

one “unit” of AWGN as being equal to one “unit” of RIN, an objective Image 

Quality Metric (IQM) was used to establish this equivalence. This IQM 

was developed at the University of Texas and is called “SSIM”. Thus, using 

this SSIM an equivalence table was generated using several images, each 

applied with different intensities of either AWGN or RIN. In this way a 

certain intensity   of AWGN can be considered to be as corruptive as an 

intensity   of RIN. Then two algorithms were implemented each 

specialized in detecting one specific type of feature in an image. The first 

was developed by J.S. Lee and K. Hoppel titled "Noise Modeling and 

Estimation” used for determine the parameters of Additive White 

Gaussian Noise in an image. A software implementation of the algorithm 
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was developed. Then a second expert system was developed, specialized in 

detecting Random Impulse Noise. The algorithm, developed by myself, 

consists of sweeping a horizontal edged detector over the image then a 

vertical edge detector is applied. Then a logical ‘OR’ is executed using the 

horizontal and vertical edge maps as inputs. What will appear on this 

“OrEdgeMap” are odd looking artifacts or donut-shaped rings encircling 

the pixel location where impulse noise was present in the original image. 

Then a series of masks are swept over the OrEdgeMap to pinpoint the 

locations of these donut rings. All of these locations are tabulated into a 

FlagMap. A final thresholding stage must be done to this FlagMap. It was 

empirically found that pixels that were flagged 5 times or more are almost 

certain to be corrupted by impulse noise. Then, using these two algorithms 

to determine the intensity of first AWGN and then the intensity of RIN in 

an image, both intensities are then compared to the lookup table, 

developed offline in the first part. The noise with the highest intensity on 

the unit-scale is considered, in a first place, to be dominant for 

content-independent noise. Then a similar process was developed for 

content-dependant noise types. However for content-dependant noise, the 

noises couldn’t directly be compared to each other by using an equivalence 

table. In the case of blurring noise, an image is more susceptible when it 

contains many edges and has complex patterns, whereas a smooth image 

of a sky will be less susceptible to blurring noise. Conversely for JPEG 

noise, an image with complex patterns will mask any JPEG artifacts and 

these will become less visible, however an image with little or no edges will 

not mask or hide any JPEG artifacts therefore JPEG block artifacts will be 

much more visible in an image with a large surface of a smooth gradient 

such as a sky.  Therefore using the same Image Quality Metric, the SSIM, 

as in the content-independent phase to create a “noise equivalence” table 
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however for content-dependent noise such as blurring, five noise intensity 

equivalence tables are created. The differentiating factor between these 

tables is the Edge-count of the test image after an edge detector has been 

passed over the image. So table 1 is used when it is considered to be few 

edges in an image, and table 5 is used when there are many edges in the 

test image. As a result a preprocessing phase must be executed on the 

image to determine the edge count in order to use the appropriate table 1 

through 5. A third “expert system”, dedicated to determining the intensity 

of blurring noise is applied to the image. This algorithm I’ve also developed 

uses an edge detector. By rotating the image slightly prior to applying the 

edge detector we obtain an angular edge graph, from this graph we must 

extract the position with the largest difference in edge count between an 

angle and its perpendicular angle. That will be considered to the shifting 

angle. Afterwards, to determine the pixel displacement of the blurring 

noise, a Richardson-Lucy deconvolution is used. With this algorithm 

determines the intensity of the motion blurring noise in an image. The 

fourth specialized modular “expert” developed for the system was a way to 

detect JPEG noise. The algorithm consisted of sweeping an edge detector 

over the image and then adding up all the edge information contained at a 

‘block boundary’. Then doing the same at a pixel row that is just one row 

above the block boundary or one row below the boundary. Then 

subsequently repeating this for several threshold values of the edge 

detector. Then the cumulative statistical data at the block boundary is 

compared to the cumulative data at the pixel row immediately above or 

below the block pixel. Finally, the noise intensity equivalent tables of the 

content-independent noise from the first part is compared to the table of 

the content-dependant noise that was used respective to the edge count in 

the second part, and the final winner is then determined. 


