
1

論文内容の要旨

論文題目

Accelerating Path-free XML Queries in RDBMS

(XML 中のパスフリー検索を RDBMS 上で高速に行う手法)

氏名 呉紅艶

Extensible Markup Language (XML) is a simple, flexible text format. XML gains
international acceptance for its openness. It can conveniently describe semi-structured data,
sparse data, hierarchical data, and metadata, some of which cannot be well managed in
RDBMS.

For example, when retrieving the mouse homologs of medaka, we care for the attributes
of gene ID, transcript ID, chromosome name and so on. We will get the flat table-formatted
result as shown in Fig.1. For the same medaka ensemble gene ENSORLG00000000006, we
will have to list it three times, because the gene ID has three different transcript IDs, although
the other attributes remain completely unchanged. In flat table format, every attribute can
only have one value. For multi-attribute records such as gene ENSORLG00000000006, it has
to be separated into different rows. In addition, for the chromosome attributes here only have
two different values (only 24 different values even for all data) we are forbidden to aggregate
them into two groups. It is the same to strand attribute. Another disadvantage of flat format is
that there does not exist any index or query language for it. You have to design the query by
yourself.

Fig. 1 Fragment of flat table data, mouse homologs of medaka's

2

 XML provides us a more flexible way to manage these problems, as demonstrated in Fig.
2. The Gene ENSORLG00000000006 occurs only once, because every cell can have multiple
transcript ID attributes. We can also group the data by strand by adding a strand level, and
then we can differentiate all genes by their strand direction.

Fig. 2 XML model for mouse homologs of medaka's

The seminal event, the emergence of WWW in the 1990, increases the need of data

interchange and also the need to deal with more heterogeneous data, which greatly extends
the application of XML, since XML data model facilitates heterogeneous and semi-structured
data management.

The morphological database, SCMD, was built to identify the morphological changes in

individual mutants. Cells can be grouped into their stage in the cell cycle, which reflects the
duration of the phase statistically. According to your research interest, besides the size of the
bud, the phase of cells in the cell cycle can also be categorized based on the detailed
information on nuclear DNA and actin localization. XML provides a flexible management
for any preference. The following figures illustrate a bud size tree structure (Fig.3) and an
actin localization tree structure (Fig.4), respectively.

Fig. 3 XML model for morphological data: group by budsize

3

Fig. 4 An alternative XML model for morphological data: group by actin localization

However, traditional XML query processing methods, such as XPath and XQuery, must

strictly follow the path-expressions in XML, which is not only error-prone, but fragile to
changes in the underlying XML structure because path expressions cannot accommodate
structural variations that may occur in designing or updating XML data. In the above example,
to retrieve the cell’s bud value and mother roundness if its actin localization is at bud, two
completely different queries have to be written for these two tree structures:

Q1: //BudSize[Cell[ActinLoc[@ALoc_value="bud"]]]/Bud_value |
 //Cell[ActinLoc[@ALoc_value="iso"]]/MotherRoundness

 Q2: //ActinLoc[@ALoc_value="bud"]/Cell//Bud_value |
//ActinLoc[@ALoc_value="iso"]/Cell/MotherRoundness

In this cases a query without the path expressions that looks like (cell, BudSize, ALoc_value,
where @ ALoc_value ="bud") will be preferable.

Considering the problems of path-based queries mentioned above, schema-free, XRank,
relational-style XML query and keyword search have been proposed. All of these previous
approaches design their own native XML databases to solve the problem, which not only
needs duplicate efforts, lose the portability, but makes the result unreusable for the later
queries because of the inherent structural variations of XML. Therefore, we explore the
approach of devising path-free XML queries in standard relational database systems with
SQL by utilizing their sophisticated data querying and materializing ability.

In this paper, we firstly propose the idea that process path-free XML queries in a pure

RDBMS. It is ideal to list all possible structural variations of a given path-free XML query,
though it is non-trivial to devise an efficient implementation due to the combinatorial
explosion of potential structural variations, nn-1 tree patterns for n queried items. In addition
the problems that RDBMS cannot offer an ideal query plan and efficient XML structural join
algorithms also pose a big challenge.

4

By adding XML-specific information to rewrite SQL clauses, we make RDBMS aware of
tree structures, thereby accelerating structural joins. In addition we analyze the optimization
plan of the original RDBMS and propose a more efficient structural combination execution
plan. In particular, we incorporate functional dependencies into our SQL queries to eliminate
the unfavorable results and reduce the query space. We design an XML interface module for
Saccharomyces Cerevisiae Morphological Database (SCMD), a database of budding yeast
mutants, so as to improve the feasibility of the original database.

Experiments carried out on SQL Server have proven orders of magnitude improvement
over the naïve implementation, demonstrating the feasibility of path-free XML query
processing using a pure RDBMS kernel. Retaining the portability, our RDBMS
implementation is as fast as the previous native XML implementation.

At last, we introduce potential applications of our proposed approach to data integration.
Utilizing the unique characteristics of our method serves as a unified platform for XML data
and relational data. Indeed, we can take advantage of the flexibility of XML, and also the
powerful ability of relational database. Dealing with XML query in a pure RDBMS efficiently
bridges the semantic gap between XML and relational database.

