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The advance of parallel and distributed computing provides a promising approach for 

researchers to harness distributed computing resources to solve their larger-scale 

scientific problems with large amount of data, where distributed file systems have 

become the de facto standard solutions for data sharing. Though efficient data sharing 

plays an important role in data-intensive distributed computing, there are still several 

problems of conventional distributed file systems when they are deployed on resources 

across different domains in the wide-area environments. First, deploying distributed file 

systems usually requires root permission and non-trivial installation effort, which 

suggests that non-privileged users are only able to use resources having a distributed 

file system installed by administrators in advance. If users would like to use resources 

across different administrative domains, they have to rely on the collaboration of 

administrators who are allowed to do so. Second, even though a distributed file system 

could be installed on resources from multiple domains, it will encounter a problem of 

inefficiency and non-scalability if there is a single central component in the system. 

Specifically, in a distributed file system with centralized metadata management server, 

high- latency data accesses occur when a client that is actually close to the target data 

but needs to acquire information of the target data from a distant metadata catalog. 

Moreover, when applications have a tendency of locality of data access, this problem 

leads to an overall low metadata performance in wide-area environments because 

metadata of locally processed data always needs to be updated in the metadata server. 

Third, conventional distributed file system usually consists of a fixed number of servers 

settled at installation time, which indicates that system capacity is unable to scale on 

demand with the number of clients. 

 

    To tackle these problems, we propose GMount, a distributed file system that can be 

effortlessly and instantaneously deployed by non-privileged users on clusters, clouds, 

and supercomputers. GMount consists of one single building block called SSHFS-MUX, 

and uses GXP shell as its distributed loader. SSHFS-MUX is a standalone remote file 

system that uses two widely available modules in most Unix/Linux servers, i.e., SSH and 

FUSE. SFTP server of SSH is used for data transfer and FUSE allows non-privileged users 

to mount a user-level file system without interfering the system kernel. SSHFS-MUX 

enables users to manipulate files on multiple remote servers via one single mount point 

on local file system where a virtual namespace is made up of merged directories from 

target servers. By GXP distributed/parallel shell, users are able to interact with 

heterogeneous resources from one to many machines through a friendly and uniform 

interface and invoke commands or processes efficiently on arbitrary target nodes in 

parallel. GXP shell is written in Python and does not require other packages either. Thus, 



the installation of GMount does not depend on additional software packages but only 

requires compilation of small code of SSHFS-MUX, and it can be done rapidly by using 

GXP shell when there are many nodes. The idea of GMount is using GXP to let nodes 

mount each other by SSHFS-MUX to construct a global shared namespace from export 

directory of each node. GMount first groups nodes by their network proximity, e.g., IP 

addresses or network topology. Then lower sharing layers are built by SSHFS-MUX 

mount within each group of nodes, and finally upper sharing layers are created among 

these groups in a hierarchical way using similar mount algorithms. By this approach, 

GMount achieves locality-aware file lookup because one target file is searched within 

local groups first and then in other groups in order of network affinity. Therefore a 

client node can quickly find and access target data without sending remote messages if it 

is close to the node having target data. This feature of GMount not only solves the 

problem of high latency access when using central metadata server, but also improves 

the scalability of metadata performance when applications have more local data 

reference than global data reference. Additionally, more clients suggest more storage 

and bandwidth in GMount. It is because each client is actually a server node and can 

make use of its own local file system. Nevertheless, GMount is not designed to be a 

distributed storage solution for users to store their data permanently but an 

instantaneous and efficient sharing approach for data-intensive computing. Although 

GMount has a limited data transfer rate by using default SSH channel, better I/O 

performance over wide-area links can be achieved by using SSH bypassing technique or 

HPN-SSH patch. Our routine use of GMount shows that it can be deployed on hundreds 

of machine from scratch in a couple of minutes. Evaluation using both parallel micro-

benchmark and real-world application illustrates that GMount has both highly scalable 

metadata and I/O performance in multiple clusters environments. In a configuration 

composed of 64 nodes from 4 clusters in wide-area, GMount achieves up to an average 

metadata performance of 50,000 ops/sec (50x speedup comparing to Gfarm) when all 

metadata accesses are local. For the worst case when every client searches non-existing 

files or creates new files in root directory, GMount has 3 to 4 times lower overall 

metadata performance than Gfarm. Accordingly, if application itself or smart scheduler 

can bring on sufficient access locality, GMount delivers better overall metadata 

performance than Gfarm in common case. By investigating the execution of real- world 

scientific applications on multiple clusters, we demonstrate that GMount has practically 

useful performance (15% speedup comparing to Gfarm) and are suitable for usual 

practice of data-intensive workflows in various distributed computing environments. 

 

    To help users further optimize the orchestration of their data-intensive workflows, 

and since profiling is an effective approach to investigate realistic behaviors of such 

complex applications, we developed a fine-grained profiler called ParaTrac. Different 

from traditional kernel-level file system tracer, ParaTrac uses entirely user-level tracing 

techniques, i.e., FUSE for file system call trace, /proc file system, kernel task accounting, 

and ptrace for processes trace. This allows non-privileged users to conduct the profiling 

on unmodified executables for both data and processes simultaneously. Comparing to 

other profilers using particular workflow management systems interfaces that only give 

coarse-grained jobs and files information, ParaTrac uses general-purpose tracing 

techniques and provides more fine-grained processes and data information. There are 

two components in ParaTrac: a FUSE-based tracer implemented in C and a profile 

generator implemented in Python. To profile an application, users only need to change 

the working directory of application to the file system directory mounted and monitored 

by tracer, then invoke profile generator to process trace logs to produce application 

profiles. The tracer records parameters and latencies of file system calls, and monitors 



the activities of corresponding processes that execute these file system calls. The 

profiler generator integrates runtime log, system call log, and process logs produced by 

tracer into one database and uses statistical or causal analysis to retrieve workflow 

information from database. ParaTrac uses statistical analysis to examine trace logs and 

produces low-level I/O profiles, which enables users to quickly understand the I/O 

characteristics of from entire application to specific processes or portion of data. For 

example, whether an application is metadata-intensive, I/O intensive, or CPU-intensive 

can be identified by the ratio of execution time spent on corresponding operations. 

Besides, ParaTrac uses temporal and causal analysis to explore fine-grained interactions 

between data and processes in workflow execution and provides users with intuitive 

and quantitative workflow profiles for detailed analysis. To achieve this, ParaTrac first 

constructs a directed acyclic graph according to the dependencies between data and 

processes, and annotates vertices and edges with corresponding runtime information. 

Then various graph-theoretic algorithms can be applied to this graph for different types 

of analysis. For example, if edge weight is annotated by elapsed time between vertices 

and the critical paths are found, the makespan of workflow can be accordingly estimated. 

Though user-level trace has a 16% overhead comparing 7% overhead by kernel-level 

trace, it provides higher usability for general users to study their applications. 

Experiments on thoroughly profiling real-world workflow by using different underlying 

data sharing approaches demonstrate that high-latency metadata operations can be 

easily detected from I/O profiles. The actual data transfer among jobs illustrated in 

workflow DAG can give hints to data dispatcher to use a data prefetching or throttling 

strategy, or to job scheduler to assign tasks to close data. 

 

    To draw a comparison between different distributed/parallel file systems, we 

designed and implemented a parallel benchmark called ParaMark. While other existing 

parallel benchmarks usually report only overall system performance as the benchmark 

results, ParaMark allows users to investigate the performance results in more fine-

grained and suggestive way. Besides overall system performance, ParaMark can 

aggregate performance at different granularity level, from threads to processes, nodes 

and clusters, which can be used to reveal bottlenecks that exist in specific system 

components but are usually hidden in whole-system-oriented tests. In addition, 

ParaMark is able to plot the variation of throughput during benchmarking time in its 

performance report, thus user can accurately analysis the dynamic behaviors of target 

systems or specific components. It is especially useful to evaluate those systems where 

performance varies from time to time. By these features, ParaMark provides more 

comprehensive comparisons and analysis between different parallel file systems with 

better grounds than simply head-to-head comparison with end results. ParaMark 

achieves this by thoroughly logging every system call invoked in benchmarking 

processes for later global analysis. ParaMark is written in Python and, like GMount and 

ParaTrac, uses GXP shell as the back-end for parallel execution and collective operations. 

We have used ParaMark for routine evaluation of distributed file systems deployed in 

multiple clusters and supercomputer, e.g., NFS, Lustre, Gfarm, and GMount. 

 

    This research targets data-intensive applications and its contribution is threefold: 

First, GMount is novel because it demonstrates an approach to build a distributed file 

system from simple and small components with considerable low development cost. It is 

practically useful for realistic data-intensive computing practice because it significantly 

lowers the barrier to conduct efficient and scalable data sharing among arbitrary 

resources for general users, and is able to utilize locality file access to achieve better 

performance in wide-area environments. Second, ParaMark and ParaTrac, as useful 



auxiliary tools, help researchers solve problems in data-intensive computing study from 

different angles, i.e., file systems and applications. In particular, they benefit recent 

effort in industry on standardizing system benchmark by seeking common factors in 

different distributed file systems and applications. Finally, GMount, ParaMark, and 

ParaTrac are free and open source software that especially values the practical usability 

for general users, which makes active and tangible contributions to the research 

community. 


