
論文の内容の要旨

EASILY DEPLOYABLE, SCALABLE, AND

 HIGH-PERFORMANCE DISTRIBUTED FILE SYSTEM

FOR DATA-INTENSIVE DISTRIBUTED COMPUTING

（データ集約型の分散コンピューティングのための簡単、スケー

ラブル、かつ高性能な分散ファイルシステム）

氏名 頓 楠

The advance of parallel and distributed computing provides a promising approach for

researchers to harness distributed computing resources to solve their larger-scale

scientific problems with large amount of data, where distributed file systems have

become the de facto standard solutions for data sharing. Though efficient data sharing

plays an important role in data-intensive distributed computing, there are still several

problems of conventional distributed file systems when they are deployed on resources

across different domains in the wide-area environments. First, deploying distributed file

systems usually requires root permission and non-trivial installation effort, which

suggests that non-privileged users are only able to use resources having a distributed

file system installed by administrators in advance. If users would like to use resources

across different administrative domains, they have to rely on the collaboration of

administrators who are allowed to do so. Second, even though a distributed file system

could be installed on resources from multiple domains, it will encounter a problem of

inefficiency and non-scalability if there is a single central component in the system.

Specifically, in a distributed file system with centralized metadata management server,

high- latency data accesses occur when a client that is actually close to the target data

but needs to acquire information of the target data from a distant metadata catalog.

Moreover, when applications have a tendency of locality of data access, this problem

leads to an overall low metadata performance in wide-area environments because

metadata of locally processed data always needs to be updated in the metadata server.

Third, conventional distributed file system usually consists of a fixed number of servers

settled at installation time, which indicates that system capacity is unable to scale on

demand with the number of clients.

 To tackle these problems, we propose GMount, a distributed file system that can be

effortlessly and instantaneously deployed by non-privileged users on clusters, clouds,

and supercomputers. GMount consists of one single building block called SSHFS-MUX,

and uses GXP shell as its distributed loader. SSHFS-MUX is a standalone remote file

system that uses two widely available modules in most Unix/Linux servers, i.e., SSH and

FUSE. SFTP server of SSH is used for data transfer and FUSE allows non-privileged users

to mount a user-level file system without interfering the system kernel. SSHFS-MUX

enables users to manipulate files on multiple remote servers via one single mount point

on local file system where a virtual namespace is made up of merged directories from

target servers. By GXP distributed/parallel shell, users are able to interact with

heterogeneous resources from one to many machines through a friendly and uniform

interface and invoke commands or processes efficiently on arbitrary target nodes in

parallel. GXP shell is written in Python and does not require other packages either. Thus,

the installation of GMount does not depend on additional software packages but only

requires compilation of small code of SSHFS-MUX, and it can be done rapidly by using

GXP shell when there are many nodes. The idea of GMount is using GXP to let nodes

mount each other by SSHFS-MUX to construct a global shared namespace from export

directory of each node. GMount first groups nodes by their network proximity, e.g., IP

addresses or network topology. Then lower sharing layers are built by SSHFS-MUX

mount within each group of nodes, and finally upper sharing layers are created among

these groups in a hierarchical way using similar mount algorithms. By this approach,

GMount achieves locality-aware file lookup because one target file is searched within

local groups first and then in other groups in order of network affinity. Therefore a

client node can quickly find and access target data without sending remote messages if it

is close to the node having target data. This feature of GMount not only solves the

problem of high latency access when using central metadata server, but also improves

the scalability of metadata performance when applications have more local data

reference than global data reference. Additionally, more clients suggest more storage

and bandwidth in GMount. It is because each client is actually a server node and can

make use of its own local file system. Nevertheless, GMount is not designed to be a

distributed storage solution for users to store their data permanently but an

instantaneous and efficient sharing approach for data-intensive computing. Although

GMount has a limited data transfer rate by using default SSH channel, better I/O

performance over wide-area links can be achieved by using SSH bypassing technique or

HPN-SSH patch. Our routine use of GMount shows that it can be deployed on hundreds

of machine from scratch in a couple of minutes. Evaluation using both parallel micro-

benchmark and real-world application illustrates that GMount has both highly scalable

metadata and I/O performance in multiple clusters environments. In a configuration

composed of 64 nodes from 4 clusters in wide-area, GMount achieves up to an average

metadata performance of 50,000 ops/sec (50x speedup comparing to Gfarm) when all

metadata accesses are local. For the worst case when every client searches non-existing

files or creates new files in root directory, GMount has 3 to 4 times lower overall

metadata performance than Gfarm. Accordingly, if application itself or smart scheduler

can bring on sufficient access locality, GMount delivers better overall metadata

performance than Gfarm in common case. By investigating the execution of real- world

scientific applications on multiple clusters, we demonstrate that GMount has practically

useful performance (15% speedup comparing to Gfarm) and are suitable for usual

practice of data-intensive workflows in various distributed computing environments.

 To help users further optimize the orchestration of their data-intensive workflows,

and since profiling is an effective approach to investigate realistic behaviors of such

complex applications, we developed a fine-grained profiler called ParaTrac. Different

from traditional kernel-level file system tracer, ParaTrac uses entirely user-level tracing

techniques, i.e., FUSE for file system call trace, /proc file system, kernel task accounting,

and ptrace for processes trace. This allows non-privileged users to conduct the profiling

on unmodified executables for both data and processes simultaneously. Comparing to

other profilers using particular workflow management systems interfaces that only give

coarse-grained jobs and files information, ParaTrac uses general-purpose tracing

techniques and provides more fine-grained processes and data information. There are

two components in ParaTrac: a FUSE-based tracer implemented in C and a profile

generator implemented in Python. To profile an application, users only need to change

the working directory of application to the file system directory mounted and monitored

by tracer, then invoke profile generator to process trace logs to produce application

profiles. The tracer records parameters and latencies of file system calls, and monitors

the activities of corresponding processes that execute these file system calls. The

profiler generator integrates runtime log, system call log, and process logs produced by

tracer into one database and uses statistical or causal analysis to retrieve workflow

information from database. ParaTrac uses statistical analysis to examine trace logs and

produces low-level I/O profiles, which enables users to quickly understand the I/O

characteristics of from entire application to specific processes or portion of data. For

example, whether an application is metadata-intensive, I/O intensive, or CPU-intensive

can be identified by the ratio of execution time spent on corresponding operations.

Besides, ParaTrac uses temporal and causal analysis to explore fine-grained interactions

between data and processes in workflow execution and provides users with intuitive

and quantitative workflow profiles for detailed analysis. To achieve this, ParaTrac first

constructs a directed acyclic graph according to the dependencies between data and

processes, and annotates vertices and edges with corresponding runtime information.

Then various graph-theoretic algorithms can be applied to this graph for different types

of analysis. For example, if edge weight is annotated by elapsed time between vertices

and the critical paths are found, the makespan of workflow can be accordingly estimated.

Though user-level trace has a 16% overhead comparing 7% overhead by kernel-level

trace, it provides higher usability for general users to study their applications.

Experiments on thoroughly profiling real-world workflow by using different underlying

data sharing approaches demonstrate that high-latency metadata operations can be

easily detected from I/O profiles. The actual data transfer among jobs illustrated in

workflow DAG can give hints to data dispatcher to use a data prefetching or throttling

strategy, or to job scheduler to assign tasks to close data.

 To draw a comparison between different distributed/parallel file systems, we

designed and implemented a parallel benchmark called ParaMark. While other existing

parallel benchmarks usually report only overall system performance as the benchmark

results, ParaMark allows users to investigate the performance results in more fine-

grained and suggestive way. Besides overall system performance, ParaMark can

aggregate performance at different granularity level, from threads to processes, nodes

and clusters, which can be used to reveal bottlenecks that exist in specific system

components but are usually hidden in whole-system-oriented tests. In addition,

ParaMark is able to plot the variation of throughput during benchmarking time in its

performance report, thus user can accurately analysis the dynamic behaviors of target

systems or specific components. It is especially useful to evaluate those systems where

performance varies from time to time. By these features, ParaMark provides more

comprehensive comparisons and analysis between different parallel file systems with

better grounds than simply head-to-head comparison with end results. ParaMark

achieves this by thoroughly logging every system call invoked in benchmarking

processes for later global analysis. ParaMark is written in Python and, like GMount and

ParaTrac, uses GXP shell as the back-end for parallel execution and collective operations.

We have used ParaMark for routine evaluation of distributed file systems deployed in

multiple clusters and supercomputer, e.g., NFS, Lustre, Gfarm, and GMount.

 This research targets data-intensive applications and its contribution is threefold:

First, GMount is novel because it demonstrates an approach to build a distributed file

system from simple and small components with considerable low development cost. It is

practically useful for realistic data-intensive computing practice because it significantly

lowers the barrier to conduct efficient and scalable data sharing among arbitrary

resources for general users, and is able to utilize locality file access to achieve better

performance in wide-area environments. Second, ParaMark and ParaTrac, as useful

auxiliary tools, help researchers solve problems in data-intensive computing study from

different angles, i.e., file systems and applications. In particular, they benefit recent

effort in industry on standardizing system benchmark by seeking common factors in

different distributed file systems and applications. Finally, GMount, ParaMark, and

ParaTrac are free and open source software that especially values the practical usability

for general users, which makes active and tangible contributions to the research

community.

