MYDOABNEE

Distributed Software Model Checking Using I/0 Cache and Process Checkpointing
(ABBF v aEFTVvIRIIF A VTEEBIARY I D T T7DETIVRE)

K% LAVDSFFvhk DOFvUY

Distributed software has played a major role in recent decades. Its spread comes with the
increased complexity in the development of such software. Concurrent execution and inter-process
communication are common in distributed applications. Such programming elements are prone to
errors hard to detect. This leads to difficulties in maintaining software quality. Model
checking is a powerful technique to find faults in concurrent applications. However, most model
checkers concentrate on stand-alone applications and lack the capability to handle distributed
applications. This thesis introduces the concepts of I/0 cache and process checkpointing. A
series of approaches, based on these concepts, are implemented to support a model checker in
dealing with distributed applications. All of these approaches concentrate on verifying a single
process called system under test (SUT), treating other processes as peers. Verifying a single
process has an advantage of scalability. The state space that must be explored is much more
smaller.than the composite state space of all processes in an application. As a result, the
model checker can completely explore the single state space in reasonable time. The I/0 cache
provides an emulated I/0 interface for the SUT. It allows communication between a SUT and peer
since the computation results on the peer are stored in the cache, ready to be replayed.
However, the I/0 cache cannot perfectly imitate peers' non-deterministic behaviors, which render
the cache contents imprecise. Accordingly, we apply the idea of process checkpointing and trade
verification time for precision. Checkpointing tools allow multiple peer processes to be
backtracked in sync with a SUT. They can also be used to suppress non-deterministic behaviors of
peers. An implementation of each approach has also been done as an extension for Java
PathFinder, a Java model checker. We succeed in verifying an extensive class of distributed
applications, e.g. a multi-process HTTP/SSH server, client and a download manager program. The
proposed approaches are also compared to one another in term of important properties in software
verification, e.g. soundness and completeness. The classes of SUT/peer applications supported by

each approach are discussed as well.



