MSXONEDEF

Large Scale Tree Search on GPU
(GPU XD RIS ALRR)

K4 oY% I <wlvws

Monte Carlo Tree Search (MCTS) is a method for making optimal decisions in
artificial intelligence (Al) problems, typically move planning in combinatorial
games. It combines the generality of random simulation with the precision of tree
search. Research interest in MCTS has risen sharply due to its spectacular
success with computer Go and potential application to a number of other difficult
problems. Its application extends beyond games, and MCTS can theoretically be
applied to any domain that can be described in terms of state, action pairs and
simulation used to forecast outcomes such as decision support, control, delayed
reward problems or complex optimization. The main advantages of the MCTS
algorithm are that it does not require any strategic or tactical knowledge about the
given domain to make reasonable decisions and algorithm can be halted at any
time to return the current best estimate. So far, current research has shown that
the algorithm can be parallelized on multiple CPUs.

The motivation behind this work was caused by the emerging GPU- based
systems and their high computational potential combined with relatively low
power usage compared to CPUs. As a problem to be solved | chose developing
an Al GPU(Graphics Processing Unit)-based agent in the game of Reversi
(Othello) and SameGame puzzle which provide sufficiently complex problems for
tree searching with non-uniform structure. The importance of this research is that
if the MCTS algorithm can be efficiently parallelized on GPU(s) it can also be
applied to other similar problems on modern multi-CPU/GPU systems such as
the TSUBAME 2.0 supercomputer. Tree searching algorithms are hard to
parallelize, especially when GPU is considered. Finding an algorithm which is
suitable for GPUs is crucial if tree search has to be performed on recent
supercomputers. Conventional ones do not provide good performance, because
of the limitations of the GPUs’ architecture and the programming scheme,
threads’ communication boundaries. One of the problems is the SIMD execution
scheme within GPU for a group of threads. It means that a standard CPU parallel
implementation such as root-parallelism fail. The other problem is a difficulty in
generating pseudo-random numbers on GPU which is important in Monte Carlo
methods. Available methods are usually very time consuming. Third of all, no
current research work discusses scalability of the algorithm for millions of threads
(when multiple GPUs are considered), so it is important to estimate to what



extent the parallelism can be increased.In this thesis | present an efficient parallel
GPU MCTS implementa- tion based on the introduced 'block-parallelism’ scheme
which combines GPU SIMD thread groups and performs independent searches
without any need of intra-GPU or inter-GPU communication. | compare it with a
simple leaf parallel scheme which implies certain performance limitations. The
obtained results show that using my GPU MCTS implementation on the
TSUBAME 2.0 system one GPU'’s performance can be compared to 50-100 CPU
threads depending on factors such as the search time and other MCTS
parameters. The block-parallel algorithm provides better results than the naive
leaf-parallel scheme which fail to scale well beyond 1000 threads on a single
GPU. The block-parallel algorithm is approximately 4 times more efficient in
terms of the number of CPU threads’ results comparable with the GPU
implementation. In order not to generate random numbers on GPU | introduce an
algorithm, where the numbers are transferred from the CPU for each GPU block
accessible as a look-up table. This approach makes the time needed for random-
sequence generation insignificantly small. In this thesis for the first time | discuss
scalability of the algorithm for millions of threads. The program is designed in the
way that it can be run on many nodes using Message Passing Interface (MPI)
standard. As a method of evaluating my results | compared the results of multiple
CPU cores and GPUs playing against the standard sequential CPU
implementation. Therefore the algorithm’s scalability is analyzed for multiple
CPUs and GPUs. My results show that this algorithm implies almost no inter-
node communication overhead and it scales linearly in terms of the number of
simulation performed in a given time period. However, beyond a certain number
of running threads, a lack of performance improvement was observed. |
concluded that this limit is affected by the algorithm’s implementation and it can
be improved to some extent by tuning the parameters or adjusting the algorithm
itself. The improvements | propose and analyze are variance-based error
estimation and simultaneous CPU/GPU execution. Using these two methods
modifying the MCTS algorithm the overall effectiveness can be increased by 10-
15% further, compared to the basis block-parallel implementation. Also, another
factor considered is the criteria of estimating the performance is the overall score
of the game (win percentage or the score). Not all the parameters in the MCTS
algorithm are analyzed thoroughly in regarding the GPU’s implementation and
their importance considering scalability. This is caused by the certain limitations
of the proposed evaluation method. As it is based on the average score, multiple
games have to be played to get accurate results and time needed to aquire them
is relatively long.



