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We establish self-contained hydrodynamic equations for a spin-1 spinor 
Bose-Einstein condensate (BEC) for an arbitrary state including nonequilibrium one. 
The obtained hydrodynamic equations, which yield a description equivalent to the 
time-dependent multi-component Gross-Pitaevskii (GP) equation, involve the continuity 
equations for the density, the spin, and the nematic tensor (or the quadrupolar tensor) 
and the equation of motion for the density. These equations are written only in terms of 
observable physical quantities, i.e., the mass current in addition to the density, the spin, 
and the nematic tensor.  

We derive the low-lying collective modes in the ferromagnetic (FM) state and the 
polar (P) state from our hydrodynamic equations: we apply linearization to the 
hydrodynamic equations with respect to the fluctuations of the density, the spin, and 
the nematic tensor. Then, the differential equations for them are derived, which yield 
the dispersion relations. The obtained dispersion relations are consistent with those 
calculated from the time-dependent multi-component GP equation or the Bogoliubov 
approximation. In addition, it is found that one of the spin modes in each state 
originates from the fluctuations of the nematic tensor.  

Since the hydrodynamic equations are described by observable quantities, they 
help us to understand the physical properties of a spinor BEC intuitively. Moreover, in a 
spinor BEC system, the in-situ and high-resolution observation of the magnetization 
profile is possible, which augments the significance of the spinor hydrodynamics. We 
can elucidate and predict features of a spinor BECs, such as spin textures and their 
dynamics, in a physically more transparent manner in comparison to the 
time-dependent multi-component GP equation written in terms of spinor order 
parameters (or a spinor wave function), which cannot be detected directly.  



 
A spinor BEC, which is a BEC with spin-internal degrees of freedom, shows a rich 

variety of phenomena originating from its spin-degrees of freedom, such as magnon 
collective modes, spin texture formation, and topological excitations. Many of these 
properties are well understood by several variations of the mean-field approximations, 
i.e., Bogoliubov-de-Gennes approximation and the multi-component GP equation 
developed by Ho and Ohmi & Macida.  

Experimentally, a spinor BEC was first realized in a sodium-23 vapor confined in 
an optical trap by Davis et. al. in 1998. Prompted by the realization of spinor BECs, 
various experiments have been performed, for example, a BEC prepared in a metastable 
state, quantum tunneling of a BEC, and spin-exchange dynamics. Furthermore, Higbie 
et. al. developed an in situ and high-resolution imaging of magnetization profiles for 
spinor BECs, which prompted the theoretical researches of the hydrodynamic 
description for spnor BECs.  

The pioneering works of the spinor hydrodynamics were done by Lamacraft and 
Kudo & Kawaguchi, which mainly focus on the experiment by Sadler et. al., i,e., spin 
domain formation in a quenched ferromagnetic BEC of rubidium-87. According to their 
works, the obtained hydrodynamic equations for a ferromagnetic BEC are written in 
terms of observable quantities, that is to say, the density ρ, the mass current 𝒗mass, and 
the spin density 𝒇. The hydrodynamic equation reduces to a modified Landau-Lifshitz 
equation with the assumption of the spatially uniform density in the work of Lamacraft, 
whereas the hydrodynamic equation is expressed in the form of a 
Landau-Lifshitz-Gilbert equation in the work of Kudo and Kawaguchi. The 
hydrodynamic equation for the polar BEC is also derived by Kawaguchi, and there are a 
couple of formalisms that can be applied to general spins and states by means of the 
Majorana representation of spin states; however, the hydrodynamic equations that are 
written in terms of observable physical quantities and enable us to treat a spinor BEC 
in an arbitrary state have not been established yet.  

Thus, in this thesis, we aim to develop such spinor hydrodynamic equations 
involving only physical quantities, which can apply to a BEC in an arbitrary state in the 
mean-field regime.  

 
The main results of this thesis are comprised of three parts as follows.  
Firstly, the appropriate variables that describe the hydrodynamic equations are 

determined on the basis of the degrees of freedom of the multi-component GP equation. 
Corresponding to the six variables of the multi-component GP equation, the 



hydrodynamic equations require the thirteen variables, that is to say, the density ρ, the 
mass current 𝒗mass, the spin density 𝒇, and the nematic tensor 𝑁𝜇𝜈, where the nematic 
tensor indicates anisotropy and axes of a spinor wave function in the multi-component 
GP description. By introducing the nematic tensor, the hydrodynamic equations for a 
spin-1 BEC are generalized to arbitrary states, i.e., the FM state, the P state, and the 
broken-axisymmetry (BA) state, which has a broken axisymmetry about an external 
magnetic field.  

Secondly, we derive the hydrodynamic equations in terms of the variables 
mentioned above. The hydrodynamic equations are made up by the continuity equations 
and the equation of motion.  

The continuity equation for the density, which involves the time derivative of the 
density and the divergence of the mass current, is expressed by the same form as that 
for the FM state except for the explicit form of the mass current:  

   ,  ,  

where 𝑀 indicates the mass of a particle and α, β, and γ denote the angles of an Euler 
rotation of the spinor wave function, and ϑ expresses the state of the BEC. Here, as a 
consequence of the generalization of the mass current, the Mermin-Ho relation of the 
mass current for the FM state is also generalized so that the Berry phase changes by a 
factor of the magnitude of the spin |𝒇|, and the difference between the circulation of the 
mass current and the Berry phase is given by (ℎ 𝑀)⁄ (𝑛 − 2|𝒇|), where 𝑛 is an integer.  

The continuity equation for the spin is also written in the same expression as that 
for the FM state except for the spin current 𝒗µ:  

   ,  ,  
where the terms on the right-hand side originate from the linear and quadratic Zeeman 
terms. For an arbitrary state, the spin current involves not only terms originating from 
mass transport and a spatial profile of 𝒇 but a term arising from spatial derivatives of 
the nematic tensor. For the particular case of the FM state, the expression of the spin 
current reduces to that for the FM state.  

The continuity equation for the nematic tensor is obtained as  

   , 

, 



where 𝒗𝜇𝜈  represents the nematic current. The term in the second line on the 
right-hand side of the continuity equation implies that the outer product of the spin and 
the column vector of the nematic tensor acts like a torque on the nematic tensor, which 
causes the nematic current as well as mass transport.  
     The last equation of the hydrodynamic description is the equation of motion for the 
density:  

     
which is analogous to the Euler equation. As we see, one of the features of a spinor BEC 
appears on the right-hand side of the equation of motion: there are the quantum 
pressure terms caused by not only the density but the spin and the nematic tensor.  
     Similarly, we also derive the equations of motion for the spin and the nematic 
tensor. Our hydrodynamic equations reduce to the hydrodynamic equations for the 
ferromagnetic BEC under the condition of the FM state.  
     Finally, we linearize the equations of motion for the density, spin, and the nematic 
tensor with respect to their fluctuation, and derive the dispersion relations for the 
low-lying collective modes in the FM state and the P state. The obtained results, which 
reproduce the elementary excitations calculated from the multi-component GP equation, 
imply that one of the magnons in each state is caused by the fluctuation of the nematic 
tensor.  
 
     In conclusion, we construct the hydrodynamic equations that are equivalent to the 
time-dependent multi-component GP equation. Our hydrodynamic equations are totally 
written in terms of the observable quantities and self-contained. We can obtain not only 
the low-lying collective excitations but also elucidate their physical origins in a 
physically transparent manner by linearizing the hydrodynamic equations. 


