
論文の内容の要旨

Cooperative Phenomena Driven by Spin-Orbit Interaction and Magnetism
（スピン軌道相互作用と磁性がもたらす協調現象）

下出敦夫

The spin-orbit interaction (SOI) and magnetism are closely related to each other. The mag-
netic structure is modified by the SOI, whose famous examples are the weak ferromagnetism
and helical magnetism due to the Dzyaloshinsky-Moriya (DM) interaction. Also, transport
phenomena are affected both by the SOI and magnetism. The spin Hall effect (SHE) and topo-
logical insulators (TIs) are examples of the phenomena driven by the SOI, and the anomalous
Hall effect (AHE) is a very phenomenon which results from the combination of the SOI and
magnetism. In the present Ph. D. Thesis, we focus on such cooperative phenomena driven by
the SOI and magnetism.

In Chapter 1, we briefly introduce the SOI and magnetism, respectively, and a few exam-
ples where the SOI and magnetism coexist. First we review our previous work on a TI in a
5d transition metal oxide Na2IrO3. In this material, the SOI and electronic interaction have
the similar energy scale. We performed the first-principles band calculations and derived the
tight-binding model, which is found to have the non-trivialZ2 topological invariant. Next we
introduce the semiconductor quantum dot (QD) system, which is studied in Chapter 2. Usually
in semiconductors, the SOI is relevant while magnetism induced by the electronic interaction
does not matter. However, when a few electrons are confined in a small region of QDs, their
spin degrees of freedom show up and can be manipulated by the SOI. Finally we introduce the
AHE, which is the subject of Chapter 3. It is a phenomenon in which the transverse charge
current is produced due to the SOI in ferromagnets.

In Chapter 2, we theoretically propose how to manipulate electron spins without magnetic
field or magnets in a double QD. We consider the exchange and time-dependent DM interac-
tions,

H(t) = J(s⃗1 · s⃗2 − 1/4) + D⃗(t) · s⃗1 × s⃗2,

where the latter arises from the Rashba SOI modulated by electric field. Within the perturbation
theory, we analytically construct three unitary operations,

(a) the spin initialization from the singlet ground state to any triplet states,

(b) the two-spin rotations in the opposite directions,

(c) the two-spin rotations in the same direction.

Especially combination of the operations (b) and (c) leads to the one-spin rotations by any
angles in any directions, as shown in Fig. 1. Thus we implement the universal quantum gates,
which are necessary for quantum computation, only by the electric field. These are confirmed
by numerical calculations in which the time-dependent DM interaction is exactly treated and
relaxation due to the hyperfine interaction with nuclear spins is included. Here the relaxation
terms in the equation of motion of the density matrix are derived by the standard boson-bath
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modelwithin the Born-Markov approximation. We propose the experimental setup to generate
the three-dimensional electric field necessary for the one-spin rotations, and discuss the realistic
time scales of the operations and relaxation.

In Chapter 3, the AHE is numerically studied including the elastic scattering by disorder
and the inelastic scattering at finite temperature. Though three mechanisms of the AHE, i.e.,
the intrinsic mechanism, skew scattering, and side jump, have been unified by the perturbation
theory with respect to the disorder at zero temperature, the effects of the inelastic scattering by
phonons and magnons at finite temperature remain to be revealed. To study this problem, we
consider a fully polarized multiband tight-binding Hamiltonian which shows both the intrinsic
and extrinsic mechanisms,

H = −t0
∑
⟨ij⟩

c†icj + ϵ1

random∑
i

s†isi − V1

random∑
i

c†isi +H.c.

+ ϵ2

random∑
i

p†ipi − V2

random∑
⟨ij⟩

e−iθijc†ipj +H.c.,

wheresi andpi describes thes andpx − ipy orbitals of impurity, and calculate the Hall con-
ductivity and resistivity by the finite temperature Kubo formula with the phenomenological
inelastic lifetime. We find the new scaling relations represented by

−σxy(T, γ) =ρextxy0(T )σ
2
xx(T, γ) + b(T )

ρextxy0(T ) =α(T )σ−1
xx0(T ) + β(T )σ−2

xx0(T ),

whereσ−1
xx0 is the elastic scattering contribution to the longitudinal resistivity. The first relation,

which separates the Hall conductivity into the extrinsic and intrinsic mechanisms, always holds
as seen in Fig. 2(a). Combining the Matthiessen’s ruleρxx(T, γ) = σ−1

xx0(T )(γ+γ0)/γ0 with the
elastic scatteringγ0, the first term describing the extrinsic mechanisms is rapidly suppressed by
the inelastic scattering, in other words, the inelastic part of the longitudinal resistivity does not
contribute to the extrinsic mechanisms of the Hall resistivity. On the other hand, the intrinsic
mechanism is quite robust against the inelastic scattering. The second relation, which separates
the extrinsic mechanisms into the skew scattering and side jump, holds only when the band
structure is well-defined as shown in Fig. 2(b). The temperature dependence comes from two
factors, one is that of the inelastic scattering strengthγ = γ(T ), and the other is the Fermi
distribution function. The temperature dependence of the extrinsic mechanisms is determined
mainly by the former, while that of the intrinsic mechanism is determined by the latter since
the inelastic scattering is irrelevant, and is enhanced when the resonant condition of the Berry
curvature is satisfied. The effect of theω-dependence of the electron self-energy due to phonons
is also discussed. Our findings correspond to the recent measurements of the anomalous part of
the Lorentz ratioLA

xy = κA
xy/σ

A
xyT , in whichκA

xy is the thermal conductivity.
Chapter 4 is devoted to the concluding remarks.
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Figure1: Time evolutions of the fidelity (black line) and spin expectation values in rotation of
spin1 aroundx axis byπ/2 combined with the operations (b) and (c). The fidelity is defined by
F (t) = [tr

√√
ρfinρ(t)

√
ρfin]

2 with the operated stateρ(t) and the desired final stateρfin, and
satisfies0 ≤ F ≤ 1 andF = 1 for ρ(t) = ρfin. For simplicity, relaxation is not included.

Figure2: (a) The Hall conductivity−σxy is plotted as a function ofσ2
xx for ximp = 0.1 (black

square),0.3 (red circle),0.5 (green triangle),0.7 (blue star), and0.9 (purple point). (b) Plot for
ρextxy0σ

2
xx0 v.s.σxx0. Lines are obtained by fitting inximp < 0.3 (red square) andximp > 0.7 (blue

triangle), respectively. Parameters are fixed toT = 0.3 andµ = ϵ2.
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