論文の内容の要旨

 論文題目 Elucidation of Molecular Mechanisms Underlying Ca²⁺/Calmodulin-Dependent Protein Kinase Iγ Activation during Dendritogenesis of Developing Cortical Neurons
(発達期大脳皮質神経細胞の樹状突起形成におけるカルシウム/カルモデュリン 依存性蛋白リン酸化酵素 Iγ活性化の分子機構の解明)

鈴木 敢三

 Ca^{2+} is a pleiotropic second messenger that plays a key role in regulation of neuronal morphogenesis. $Ca^{2+}/calmodulin-dependent$ protein kinases (CaMKs) are good candidates as potential downstream effectors of Ca^{2+} elevation in neurons. We previously found that distinct limbs of the CaMKK-CaMKI cascade were specifically implicated in determining the extent of either dendritic or axonal growth downstream of different growth guidance signals in cultured cortical neurons. A membrane-anchored CaMKI γ regulated dendritogenesis downstream of BDNF, while in contrast, cytosolic CaMKI α strongly promoted axonal outgrowth and arborization downstream of excitatory GABA. However the key molecular mechanisms controlling the dendritogenetic and axonogenetic selectivity of CaMKI γ and CaMKI α have not been addressed. Here I demonstrate the activation mechanisms of the CaMKI γ -dependent dendritic growth and enhanced the maximal activity of CaMKI γ , but not CaMKI α . The present *in vitro* study revealed that CaMKI γ was a privileged sensor for small Ca²⁺ rises. Furthermore, distinctive substrate signatures were identified for CaMKI γ and CaMKI α based on peptide library profiling analysis. Thus, a lower Ca²⁺ threshold for activation of CaMKI γ , in combination with an altered substrate specificity and a dendritic enrichment through raft anchoring, may be key molecular mechanism of CaMKI γ -mediated selective dendritogenesis downstream BDNF during development of immature cortical neurons.