論文の内容の要旨

論文題目 過酸化水素検出蛍光プローブの開発

氏名 安保 真裕

【背景•目的】

活性酸素種（Reactive oxygen species，ROS）は，紫外線，虚血，免疫反応などによって生体内 で発生すると，その生体分子との高い反応性から細胞障害作用を引き起こし，神経疾患，がん，動脈硬化などの病因となると古くから考えられてきた。しかしながら，近年では，NADPH oxidase （ Nox ）ファミリーの発見を契機として，スーパーオキサイドや過酸化水素（ $\mathrm{H}_{2} \mathrm{O}_{2}$ ）といった，比較的酸化力の弱いROSを積極的に産生することによって，生体は生命機能を維持していることが明らかとなりつつある。NoxはNADPH を酸化し，酸素を還元することでスーパーオキサイドを産生する。スーパーオキサイドは自発的あるいは酵素によって不均化反応を起こし，過酸化水素 となる。Nox が特徴的な点は，副生成物としてではなく，真の産物としてROSを産生すること である。特に，過酸化水素は生体内での長い寿命と穏やかな反応性から，レドックスシグナル伝達を担ら分子として，生物学領域で注目を集めている。しかし，現状では，生体内で過酸化水素 を選択的かつ高感度に検出できる系はないと言ってよく，そのような系を開発することはROS の生物学上，重要な課題となっている。そこで私は，過酸化水素を検出するための蛍光プローブの開発を目指して研究を行った。

【研究の内容】

過酸化水素の検出原理として，Benzil chemistryに着目した。Benzilは1979年に NaOH 塩基性のメタノール中において，過酸化水素と反応して安息香酸とそのメチルエステルを与えること が報告されていた。また，蛍光制御原理として光誘起電子移動（PeT）を利用した。Benzil は還元電位が－1．1V vs．SCE と大きく，蛍光団近傍に存在する場合には蛍光団から Benzilへの光誘起電子移動（donor－excited PeT，d－PeT）が起こり，蛍光の消光が起こることが予想された。以上の知見から，私は過酸化水素検出蛍光プローブの候補化合物として 5－Benzoylcarbonylfluorescein誘導体を設計した（Scheme 1）。 この化合物は，過酸化水素と の反応前は d－PeTにより弱蛍光性であるが，過酸化水素と反応して強蛍光性の 5－Carboxyfluorescein へと変換されるようデザインされて いる。この設計に基づき，生体内の低濃度の過酸化水素を検出できるよう，Benzil 部位 の修飾によって，過酸化水素
 Weakly Fluorescent

Scheme 1．Design of novel fluorescence probes for $\mathrm{H}_{2} \mathrm{O}_{2}$ ． との反応性の向上を検討した。
実際に，Rが水素，ブロモ，メトキシ，シアノ，ニトロで置換された 5 種類の誘導体を合成し， in vitroでの評価を行った。吸収蛍光特性は，いずれの誘導体も 490 nm 付近の吸収極大と 520 nm付近の蛍光極大を示したが，蛍光量子収率は低く抑えられており，d－PeTによる消光が確認され た。次に，過酸化水素反応性について検討を行った。中性の水中において各誘導体と過酸化水素 を反応させ，蛍光強度上昇を測定したところ，強電子吸引性のシアノ基およびニトロ基をもつ誘遒体4 および NBzF は大きな蛍光強度増大を示し，過酸化水素との良好な反応性が示された
（Figure 1）。誘導体 4 と NBzF はともに優れた過酸化水素反応性を示したが，特に NBzFにつ いては過酸化水素との反応前がほぼ無蛍光性であるため，反応前後で 150 倍の大幅な蛍光強度の上昇が得られた。NBzFと過酸化水素との反応生成物を HPLCおよびNMRにより解析したとこ る，主な生成物は 5 －Carboxyfluorescein と 4 －Nitrobenzoic acid のみであることが確認された。 また，NBzFのROS 間での過酸化水素に対する選択性を検討したところ，NBzF は過酸化水素に高い選択性を示した。以上，NBzF は過酸化水素の選択的かつ高感度な検出を可能にする優れた蛍光プローブであることが明らかとなった。そこで次に，NBzF の生細胞イメージングヘの応用 を行った。RAW264．7マクロファージにNBzFのジアセチル体 NBzFDAを負荷し，ホルボール エステルの一種である PMA で細胞を刺激したところ，細胞内にエンドソームが形成され，エン ドソーム内から強い蛍光シグナルが観察された（Figure 2）。これは，PMA 刺激により活性化さ れた Nox がエンドソーム内へ産生する過酸化水素を検出したものと考えられる。
（A）

（B）

	$k\left(\times 10^{-3} \mathrm{~s}^{-1}\right)$	
Dye	$25^{\circ} \mathrm{C}$	$37^{\circ} \mathrm{C}$
4	2.9	4.1
NBzF	4.4	8.0

（C）

Figure 1．Reactivity with $\mathrm{H}_{2} \mathrm{O}_{2}$ in vitro．（A）Fluorescence increments of derivatives upon addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ ． （B）Pseudo－first order reaction rate constant（ k ）with $1 \mathrm{mM} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}$ ．（C）Fluorescence spectra of NBzF upon addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ ．All experiments were performed in 0.1 M sodium phosphate buffer at pH 7.4 ．

実際に，Nox 阻害剤である Apocynin および過酸化水素消去剤である Ebselen で処理すること により蛍光シグナル上昇は抑えられた。また，NO 合成酵素阻害剤であるL－NAME では，エンド ソームの蛍光シグナル増大に対する有意な阻害活性は見られなかった。さらに，A431 ヒト類表皮 がん細胞を EGF 刺激することにより産生される過酸化水素の生細胞イメージングに NBzFDAを適用したところ，EGF 刺激依存的な蛍光シグナルの上昇が見られた（Figure 3）。この蛍光シグ ナル上昇はApocynin および Ebselenにより阻害されることからも，EGF 刺激依存的に産生され た過酸化水素を検出していると考えられる。A431細胞において EGF 刺激依存的に産生された過酸化水素は，ホスファターゼの一種である PTP1Bを酸化して可逆的に阻害することにより EGF によるシグナルを増強していることが報告されており，一種のシグナル伝達因子と考えることが できる。シグナル伝達因子としての過酸化水素は，生物学領域において大きな関心を集めており， NBzF は非常に有用な研究ツールとなることが期待される。

Figure 2．Live cell imaging of RAW264．7 macrophages stimulated by PMA．（A）Control，（B）PMA （ $1 \mu \mathrm{~g} / \mathrm{ml}$ ）stimulation，（C）PMA stimulation with 5 mM apocynin，（D）PMA stimulation with $5 \mu \mathrm{M}$ ebselen，（E）PMA stimulation with 5 mM L－NAME，（F）Fluorescence intensities of endosomes were averaged．${ }^{*} \mathrm{P}<0.01,{ }^{* *} \mathrm{P}<0.001$ and error bars are \pm s．d．

Figure 3．Live cell imaging of $\mathrm{H}_{2} \mathrm{O}_{2}$ in A431 cells． $\mathrm{NBzFDA}(5 \mu \mathrm{M}$ ）and inhibitors were loaded on A431 cells at $37{ }^{\circ} \mathrm{C}$ for 10 min ，then cells were stimulated by $500 \mathrm{ng} / \mathrm{ml}$ of EGF for 30 min ．Scale bars are $50 \mu \mathrm{~m}$ ．

以上述べたように，NBzF は優れた特性を有する過酸化水素検出蛍光プローブであるが，問題点として細胞漏出性が高いことが明らかとなった。プローブの細胞からの漏出は，長時間のイメ ージングを困難にし，また検出感度の低下を引き起こしてしまら。そこで私は，これまでに確立 した Benzil chemistry に基づく分子設計法を高い細胞内滞留性を有する蛍光色素である calcein に適用することによって，高い細胞内滞留性を有する過酸化水素検出蛍光プローブである BzCa の開発を行った。BzCaは NBzF と同等の優れた過酸化水素応答性を有し，それに加えて実際に優れた細胞内滞留性を有することが明らかとなった。さらに，BzCaを用いることによって，NBzF では困難であった A431 細胞での過酸化水素産生の経時的イメージングが可能であることが示さ れた。

【まとめと展望】
私は，Benzil chemistry と光誘起電子移動に基づいて過酸化水素検出蛍光プローブを分子設計 および合成し，優れた過酸化水素検出蛍光プローブ NBzF の開発に成功した。さらに，NBzF の ジアセチル体 NBzFDA を生細胞イメージングへと応用し，RAW264．7マクロファージおよび A431ヒト類表皮がん細胞から産生される過酸化水素のイメージングに成功した。また，確立した分子設計法を calcein骨格に適用することにより，細胞内滞留性に優れた過酸化水素検出蛍光プロ ーブ BzCa の開発に成功した。Benzil chemistry に基づく分子設計法は様々な蛍光骨格に適用可能な汎用性の高いプローブ設計戦略であり，本研究により実用性の高い過酸化水素検出蛍光プロ ーブ開発への道が切り開かれた。

【発表文献】

Masahiro Abo，Yasuteru Urano，Kenjiro Hanaoka，Takuya Terai，Toru Komatsu and Tetsuo Nagano，＂Development of a Highly Sensitive Fluorescence Probe for Hydrogen Peroxide＂， Journal of the American Chemical Society，2011， 133 （27），10629－10637．

