論文題目 細胞内ホスファチジルセリンによる膜輸送制御機構

氏名 内田 安則

【序】

ホスファチジルセリン（PS）は生物界に広く保存された酸性リン脂質であり，アポトー シス時に細胞外部に露出し＂eat－me＂シグナルとして機能すること，また形質膜でプロテ インキナーゼ C などのシグナル伝達分子の活性化に寄与することが知られている。PS は細胞内オルガネラにも存在するが，細胞内におけるPS の機能はこれまで知られていなかった。

リサイクリングエンドソーム（REs）は形質膜から取り込まれた受容体などが再び形質膜 へ戻る（リサイクルする）際に必要なオルガネラであり，当研究室での解析から，形質膜 からエンドソーム，ゴルジ体へ輸送される逆行性膜輸送経路にも必須であることが示され ている。また，脂質結合ドメインとして知られるPleckstrin Homology（PH）ドメインを持 つ evectin－2（evt－2）タンパク質がPH ドメインを介してREsに局在し，REs からゴルジ体 への逆行性輸送に必要であることも分かっている。

私は修士課程において，evt－2 のPH ドメインが PS と特異的に結合することを見出した。 さらに，細胞内のPS を可視化するプローブを用いて，REs が PS に富んだオルガネラである ことを明らかにした。そこで博士課程では，X 線結晶構造解析から evt－2によるPS認識機

構を解明するとともに，PS との結合が evt－2 の局在，機能に必要であることを示した（参考文献）。また，PS の逆行性輸送への関与をより直接的に検討するため，PS 合成酵素を欠損した変異細胞を用い，PS 減少下での表現型解析を行った。

【方法と結果】

1．evt－2 PH ドメインによる PS 認識機構

evt－2 の PH ドメインとPS の極性頭部であるリン酸化セリンを混合して共結晶化を試み，分解能 $1.0 \AA$ の共結晶構造を得ることに成功した。evt－2 のPH ドメインはPH ドメインの典型的な構造である 7 本の β ストランドと， C 末端の α ヘリックスから構成されていた。リ ン酸化セリンは β ストランドの間のループに結合しており，evt－2 の塩基性アミノ酸（R11， R18，K20）と塩橋を形成していた。R11 はカルボキシル基，R18 はリン酸基，K20 はその両方と相互作用しており，これらのアミノ酸が PS の認識に必要であることが示唆された。

そこで，R11，R18，K20をグルタミン酸に置換したR11E，R18E，K20E 変異体（PH ドメイ ンのみのコンストラクト）を作成し，REs の観察に適した COS－1 細胞に発現させ，局在を観察した。野生型の PH ドメインは，COS－1 細胞でREs が存在するゴルジ体マーカーの内部に局在するが，R11E，R18E，K20E 変異体は細胞全体に分散した。また，K20E 変異体は，in vitro でPSへの結合能を失った。この結果から，これらのアミノ酸が REsへの局在に必要であり，細胞内でPSを認識していることが支持された。

2．PS との結合が evt－2のRE局在，機能に必要である

全長の evt－2 にK20E の変異を導入し，PS 結合能を持たない変異体を作成した。K20E 変異体（全長）をCOS－1 細胞に発現させると，野生型で見られる RES への局在性を失い，細胞質中に分散して局在した。この結果から，PS との結合能が全長の evt－2 のRE局在に必要 であることが分かった。

次に evt－2 の機能にPS との結合が必要か検討した。evt－2 のsiRNA による発現抑制下で は，逆行性輸送でゴルジ体に運ばれる TGN46 タンパク質が，ゴルジ体からドット状に分散 する。evt－2 の発現抑制下で，siRNA 耐性の mouse evt－2 を発現させ，表現型がレスキュー するか検討したところ，野生型の evt－2 を発現させた場合は TGN46 のゴルジ体局在が回復 した。一方でPSに結合できないK20E 変異体を発現させた場合は，回復が見られなかった。 このことから，PS との結合が，evt－2 の機能（TGN46 の逆行性輸送）に必須であることが分 かった。

3．PS 減少下での逆行性輸送の解析

PS の逆行性輸送への関与をより直接的に示すために，PS 量が減少した条件で逆行性輸送 が阻害されるか検討した。PSは哺乳動物細胞において，ホスファチジルコリン（PC），及び ホスファチジルエタノールアミン（PE）から合成され，CH0－K1 細胞を親株として PC から PS を合成する酵素が欠損した変異株（PSA－3）が単離されている。この細胞ではPEからPS を合成することができるため，培地中に PE の前駆体であるエタノールアミン（Eth）が十分に存在する場合はPS を合成することができるが，培地からEth を除くとPS 量が減少す る。

この PSA－3 細胞を用いて，TGN38（TGN46 のげっ歯類相同分子で，逆行性輸送により形質膜からゴルジ体へ運ばれる）の局在を観察した。Eth が豊富に存在する場合は，TGN38 はゴ ルジ体に局在し，ゴルジ体マーカーと共局在する。しかし，Ethを除いてPSを減少させた条件では，TGN38は細胞質中に分散した。さらに，この条件下で培地中にPSを添加すると， TGN38 のゴルジ体局在は回復した。この結果から，TGN38 のゴルジ体局在にはPS が必要で あり，PS 減少下ではTGN38のゴルジ体への輸送が阻害されていることが示唆された。

【まとめと考察】

本研究において，私は evt－2 のPH ドメインによるPS の認識機構をリン酸化セリンとの共結晶構造解析により明らかにした。PHドメインのリガンドとしてはPIPs（ホスファチジ ルイノシトールポリリン酸）が良く知られており，evt－2のPH ドメインはPSを特異的に認識する初めての PH ドメインである。リン酸化セリンを認識するアミノ酸残基のらち，R11 はevt－2に特徴的であり，PIPs を認識するPH ドメインには保存されていないアミノ酸であ った。R11はPSに存在し，PIPsには存在しないカルボキシル基を認識することから，evt－2 PH ドメインの PS 結合特異性を規定するアミノ酸である可能性がある。

次に，PS に結合できないevt－2変異体を用いて，PS との結合が evt－2によるREs からゴ ルジ体への逆行性輸送制御に必要であることを示した。さらに，PS 合成酵素の変異細胞 （PSA－3 細胞）を用いて，PS 減少下では，逆行性輸送でゴルジ体に運ばれる分子（TGN38） の局在が異常になることを見出した。この結果は，PS に特異的に結合する分子の同定，PS減少下の表現型解析を通じて，細胞内PS の機能を膜輸送という観点から初めて明らかにし たものである。今後も PSA－3 細胞などを用いた解析から，細胞内PS の生理的機能がますま す明らかになっていくことが期待される。

【参考文献】

Uchida Y＊，Hasegawa J＊，et al．Intracellular phosphatidylserine is essential for retrograde membrane traffic through endosomes．Proc Natl Acad Sci $U S A$ ， 108（38）：15846－51，2011．（＊co－first author）

