論文題目：A Study Towards Total Synthesis of Ryanodine
 （リアノジンの全合成研究）

氏名：長友 優典

Abstract

Ryanodine（1，Scheme 1）was first isolated from stem and root material of Ryania speciosa Vahl by Folkers and colleagues at Merck in $1948 .{ }^{1}$ Compound $\mathbf{1}$ is a potent modulator of intracellular calcium channels，designated as ryanodine receptors．${ }^{2}$ The complex molecular architecture of $\mathbf{1}$ including the fused five rings and the contiguous eleven stereogenic centers poses a unique synthetic challenge．${ }^{3}$ Herein efforts towards the total synthesis of $\mathbf{1}$ are described．

Our research group has already synthesized the C_{2}－symmetric intermediate（8， Scheme 1）by applying pairwise symmetrical functionalizations．${ }^{4}$ However，the previous studies in our group revealed that formation of the $\mathrm{C} 10-\mathrm{C} 11$ bond by nucleophilic addition to the C11－ketone of $\mathbf{8}$ was practically impossible，due to the extreme steric congestion around the C11－ketone．Therefore，a novel strategy towards construction of C11－tetrasubstituted

carbon center was necessitated. Accordingly, the author planned a new radical based strategy towards a total synthesis of $\mathbf{1}$ (Scheme 1). Targeted 1 would be converted from ryanodol 2, which was to be synthesized through construction of the C-ring by ring-closing metathesis of acyclic enone 3. Compound $\mathbf{3}$ in turn would be prepared by stepwise regioand stereoselective introduction of three different C3-units to the C2-, C6-, and C10-carbonyl groups of 4. Compound 4 would be generated from acetal 5, which contains the fused ABDE-ring system. To construct the C11-tetrasubstituted carbon center, the author planned the α-alkoxybridgehead radical mediated reaction. ${ }^{5}$ Specifically, thiocarbonate 7 would produce a highly reactive α-alkoxybridgehead radical, which would react with allylstannane to construct the tetrasubstituted carbon center. The precursor 7 could be synthesized from 8 through oxidative desymmetrization of the C14-C15 double bond and subsequent double acetalization at the C11- and C15-ketones.

Scheme 1. Retrosynthetic analysis of 1 from 8.

1. Construction of the ABDE-Ring System of Ryanodine

The intermediate $\mathbf{5}$, containing tetracyclic fused ABDE-ring system, was synthesized from C_{2}-symmetric 8 (Scheme 2). $\quad C_{2}$-symmetric diacetate $\mathbf{9}$ was prepared from $\mathbf{8}$ over 3 steps. The next reaction effectively desymmetrized C_{2}-symmetric 9. Namely, dihydroxylation of the C14-C15 double bond gave desymmetrized acetal 10. The following four steps smoothly converted $\mathbf{1 0}$ into triketone 11. Then, treatment of $\mathbf{1 1}$ with benzyl alcohol in the presence of acidic SiO_{2} at $80{ }^{\circ} \mathrm{C}$ produced tetracyclic hemiacetal 12, which possesses the benzyl acetal at C 15 position. The regioselective generation of $\mathbf{1 2}$ involved the intermolecular nucleophilic addition of benzyl alcohol to the C15-ketone and subsequent nucleophilic addition of the resultant hydroxy group of the hemiacetal to the C11-ketone. Conversion of $\mathbf{1 2}$ to thiocarbonate $\mathbf{7}$ was performed at $-78^{\circ} \mathrm{C}$ to produce the desired 7 . Remarkably, under the basic conditions, ejection of benzylalcohol and reformation of triketone were not observed.

With the radical precursor in hand, the author's efforts were turned to construction of the C11-tetrasubstituted carbon center. To our delight, treatment of $\mathbf{7}$ with allyltributyltin and AIBN in benzene at $100^{\circ} \mathrm{C}$ gave rise to the tetracyclic ABDE-ring $\mathbf{5}$ in 90% yield. This result demonstrated the power of the α-alkoxybridgehead radical technology even for formation of the most sterically congested bonds. ${ }^{5}$

8

9

Scheme 2. Construction of the ABDE-ring system of 1 from 8.

2. Synthesis of Fully Functionalized Pentacyclic Skeleton

Fully functionalized intermediate $\mathbf{1 8}$ was synthesized from intermediate 5 (Scheme 3). The MOM group at $\mathrm{C} 6-\mathrm{OH}$ of 5 was selectively removed by treatment with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and $\mathrm{Me}_{2} \mathrm{~S}$ at $-40{ }^{\circ} \mathrm{C}$. After oxidation of the resultant alcohol with Dess-Martin reagent, the terminal double bond was isomerized to the internal double bond using $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$ at $100{ }^{\circ} \mathrm{C}$. The internal double bond was then dihydroxylated with OsO_{4} to provided diketo-diol 13 as a $1: 1$ diastereomixture. Subsequent nucleophilic addition of allyl MgBr to 13 in THF at $-78{ }^{\circ} \mathrm{C}$ proceeded regio- and stereoselectively at C6-ketone. Then, oxidative
cleavage of the 1,2 -diol of $\mathbf{1 3}$ with $\mathrm{Pb}(\mathrm{OAc})_{4}$ in benzene produced aldehyde $\mathbf{1 4}$. After considerable experimentation, the author found that installation of the cyclopropyl group at C 2 as an isopropyl equivalent was necessary before cyclization of the C-ring by RCM. The aldehyde of 14 was chemoselectively reduced by NaBH_{4} to the primary alcohol and subsequent cleavage of the MOM ether using $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and $\mathrm{Me}_{2} \mathrm{~S}$ at $-20^{\circ} \mathrm{C}$ afforded the triol. TBS protection of the obtained triol, followed by Dess-Martin oxidation, provided 1,2-diketone 15. Addition of the cyclopropyl group to C2-ketone of $\mathbf{1 5}$ was successfully accomplished by using cyclopropyl lithium in the presence of TMEDA. Then, the TBS group was removed by treatment with TBAF in MeCN and the resultant alcohol was oxidized by IBX to aldehyde $\mathbf{1 6}$. The addition of isopropenyl lithium to the aldehyde of $\mathbf{1 6}$ provided the diene as a single diastereomer. After oxidation of the resultant C10-hydroxy group with IBX, RCM of 17 with Hoveyda-Grubbs' $2^{\text {nd }}$ generation catalyst smoothly constructed the pentacyclic skeleton of 18, a fully functionalized intermediate of ryanodol $\mathbf{3}$ and ryanodine $\mathbf{1}$. Efforts towards total synthesis of $\mathbf{1}$ from $\mathbf{1 8}$ are currently underway

1. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{Me}_{2} \mathrm{~S}$

Scheme 3. Construction of fully functionalized pentacyclic skeleton of $\mathbf{1}$ from 5.

References

1. Rogers, E. F.; Koniuszy, F. R.; Shavel, J.; Folkers, K. J. Am. Chem. Soc. 1948, 70, 3086-3088.
2. Sutko, J. L.; Airey, J. A.; Welch, W.; Ruest, L. Pharmacol. Rev. 1997, 49, 53-98.
3. Belanger, A.; Berney, D. J. F.; Borschberg, H.-J.; Brousseau, R.; Doutheau, A.; Durand, R.; Katayama, H.; Lapalme, R.; Leturc, D. M.; Liao, C.-C.; MacLachlan, F. N.; Maffrand, J.-P.; Marazza, F.; Martino, R.; Moreau, C.; Saint-Laurent, L.; Saintonge, R.; Soucy, P.; Ruest, L.; Deslongchamps, P. Can. J. Chem. 1979, 57, 3348-3354.
4. a) Hagiwara, K; Himuro, M.; Hirama, M.; Inoue, M. Tetrahedron Lett. 2009, 50, 1035-1037.
b) Hagiwara, K. Ph.D. Thesis, Tohoku University, 2008.
5. Urabe, D.; Yamaguchi, H.; Inoue, M. Org. Lett. 2011, 13, 4778-4781.
