
47-097019：畢重科 

 

論文の内容の要旨 

論文題目     Degeneracy-Aware Interpolation of  

          Diffusion Tensor Fields and Its Applications 

     （退化を考慮した拡散テンソル場の補間と応用）  

氏  名              畢 重科 

1 Introduction 

  Visualizing diffusion tensor fields has become an 

important topic in many applications. However, it is 

still difficult to track the underlying continuous 

behaviors embedded in discrete diffusion tensor 

fields by employing existing schemes, especially 

around degenerate points that lead to rotational 

inconsistency of tensor anisotropy. 

 We describe our first contribution to smoothly track 

the continuous behaviors in diffusion tensor fields in 

Chapter 3 and Chapter 4 (Figure 1). This is 

accomplished by locating the possible degenerate 

points globally using a minimum spanning tree (MST) 

based algorithm firstly. Then we limit the size of 

isotropic region to avoid that these isotropic tensor 

samples degrade the anisotropic features of the 

underlying continuous behaviors in the discrete 

diffusion tensor fields. 

  The idea to locate the possible degenerate points 

globally in the diffusion tensor fields inspires our 

next contribution demonstrated in Chapter 5 (Figure 

1) to control the mesh topology in quadrilateral mesh 

through introducing a 2D diffusion tensor field. This 

is because the streamlines along the two principal 

directions of a tensor field and a quadrilateral mesh 

are dual to each other. The region containing a 

degenerate point that is located by using our MST 

algorithm is dual to an extraordinary (i.e. 

non-degree-four) vertex in a quadrilateral mesh, 

while the non-degenerate region is dual to an 

ordinary vertex in the quadrilateral mesh.  

Furthermore, all-hexahedral mesh is also generated 

by using sweeping operations. 

2 Degeneracy-Aware Interpolation of 2D  

  Diffusion Tensor Fields 

  Our primary idea [1] for interpolating 2D 

diffusion tensor fields is to locate and resolve tensor 

degeneracy for tracking smooth transitions of 

anisotropic features inherent in the given data.   

  For locating the possible tensor degeneracy, we 

employ a minimum spanning tree (MST) strategy to 

group discrete tensor samples with similar 

orientations of the anisotropic features. For this 

purpose, we define the similarity between a pair of 

neighboring tensor samples as: 
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Figure 1: Organization of this thesis 
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where S

lC  and S

lC  represent the 
lC  values of 

the two tensors 
S

D  and 
T

D , and S

pC  and T

pC  

represent the corresponding 
pC  values. In 

addition, TS , is the minimal rotation angle 

between the right-handed coordinate systems 

defined by the two sets of eigenvector directions. 

Here, we locate degenerate points by counting the 

number of degenerate pairs in one cell, where a 

degenerate pair is defined as a pair of tensors whose 

rotational angle is larger than 2/ .    

 The rotational inconsistency is resolved by 

optimizing the rotational transformation between a 

pair of neighboring tensors through analyzing their 

associated eigenstructure.  

  Figure 2 shows a result where a 2D tensor field 

with three degenerate points is interpolated. 

3 Degeneracy-Aware Interpolation of 3D  

  Diffusion Tensor Fields 

  In 3D diffusion tensor fields, it becomes much 

more difficult to locate and resolve tensor 

degeneracy since the topological structure of 

degeneracy is much more complicated.  

  When constructing a minimum spanning tree in 

3D space, we often encounter unwanted cases 

where an important pair of tensor samples are left 

unconnected, especially when the rotation angle 

between the primary eigenvectors at the two end 

tensor samples becomes close to 0 while those 

between other pairs of eigenvectors approach to 

       (a)                     (b)                   (c)                    (d)                    (e) 

Figure 2: Interpolating a diffusion tensor field containing three degenerate points ( represented by green 

circles). (a) Original tensor samples. The results with the (b) component-wise and (c) log-Euclidean. 

These interpolation methods cannot retain the anisotropic feature inherent in the original tensor field, as 

indicated by the black circle. (d) The result with geodesic-loxodrome. This usually incurs the problem of 

rotation inconsistency around degenerate points, as shown by the black rectangle. (e) The result obtained 

by our interpolation scheme. Our scheme can fully respect the high anisotropic features, and take care of 

the rotational inconsistency around degenerate points.  

                      (a)                            (b)                           (c)   

Figure 3: Tracking two fibers in a human brain DT-MRI dataset, where the red point is the seed point. 

Several degenerate points exist between the two fibers. Interpolated results with the (a) component-wise 

and (b) log-Euclidean cannot fully track the two fibers due to the degeneracy in the region between the 

two fibers, while our scheme can successfully track the two fibers and avoid the influence of existing 

degeneracy. This is because we limit the size of the isotropic region while maximally respecting the 

anisotropy of the fibers. 
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2/ . For avoiding this, we revise the previous 

similarity metric as the following new one [2]: 
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where the fourth term is newly introduced to 

evaluate the minimum rotational angle between the 

two primary eigenvectors since they are the most 

important for fiber tracking. The fifth term is 

employed to discriminate between the two tensors 

with the same anisotropy orientation but different 

size. 

  For resolving rotational inconsistency, we 

minimize an objective function so as to transform 

each degenerate pair to non-degenerate one as well 

as to minimize the number of newly generated 

degenerate pairs.  

  Figure 3 shows a result where the two fibers that 

run around the tensor degeneracy have been tracked 

in a human brain dataset.  

4 Quadrilateral/Hexahedral Mesh Generation  

   based on Tensor Fields 

We proposed an approach [3] to interactively 

controlling the mesh topology of quadrilateral 

meshes by introducing diffusion tensor fields into 

the target object.  

  Firstly, the Poisson equation is employed to 

generate the tensor field (Fig. 4(c)) by propagating 

the tensor anisotropic features along the boundary 

(Fig. 4(b)) into the interior of the target object (Fig. 

4(a)). The possible degenerate points are also 

located by using our MST-based algorithm. 

  Then, the streamlines of the diffusion tensor field 

(Fig. 4(d)) can then be transformed into the dual 

graph (Fig. 4(e)) of the quadrilateral mesh (Fig. 

4(f)), since the streamlines and quadrilateral mesh 

are dual to each other. Furthermore, our approach 

allows us to interactively control the mesh topology 

by changing the orientations of the tensor samples 

on the boundary of the target object. 

  Finally, we extend the framework of quadrilateral 

                   (a)                             (b)                           (c) 

                   (d)                             (e)                           (f) 

Figure 4: Generating a quadrilateral mesh in the interior of the target object. (a) 2D bunny shape. (b) The 

diffusion tensor field along the boundary of the bunny object. (c) The generated diffusion tensor field in 

the interior of the bunny object. The blue point represents a detected degenerate point. (d) The streamlines 

of the diffusion tensor fields. (e) The dual graph of the quadrilateral mesh obtained from the streamlines in 

(d). (f) The quadrilateral mesh obtained from its dual graph in (e). 
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mesh to generate all-hexahedral mesh using 

sweeping method. 

5 Conclusions and Future Work 

 In this thesis, we proposed a degeneracy-aware 

interpolation approach for diffusion tensor fields, 

which can successfully allow us to track the 

underlying anisotropic features such as nerve and 

muscle fibers. This has been achieved by using an 

MST-based algorithm to locate the possible 

degenerate points, and resolving such degeneracy 

by optimizing the rotation transformation between 

each pair of tensors.  

  We also introduced an approach to interactively 

controlling the mesh topology of quadrilateral 

meshes by introducing a 2D diffusion tensor field 

into a target object. Finally, all-hexahedral mesh is 

also generated when the target object can be 

composed through sweeping operations. 

Our future extension includes the challenge to 

extend our framework to generate all-hexahedral 

meshes in the volume without constructed structure. 
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