論文審査の結果の要旨

氏名
包
明 久

本論文は，様々な生命現象を緻密に制御することが知られている small interfering RNA（siRNA）や microRNA（miRNA）などの小分子 RNA が生合成さ れる過程において，最も重要なステップの一つである Dicing に着目し，特に ショウジョウバエDicer－1 が基質である miRNA 前駆体のヘアピン構造を特異的に認識し切断するメカニズムを明らかにしたものである。 miRNAは長い一次転写産物として転写された後，核内においてDroshaと呼ば れる酵素によって切り出されmiRNA前駆体が作られる。miRNA前駆体は細胞質に輸送された後，Dicerにより再度切断されることにより，miRNA／miRNA＊二本鎖が作られ，これがArgonauteタンパク質に取り込まれ一本鎖化すること により，初めて標的mRNAの発現を抑制できる。 ヒトを初めとする多くの生物においては，一種類のDicerがmiRNA前駆体から のmiRNA／miRNA＊二本鎖の切り出しと，長い二本鎖RNAからのsiRNA二本鎖 の切り出しの両方を行うが，ショウジョウバエを初めとする昆虫では，Dicer－1 とDicer－2のパラログが，それぞれsiRNAとmiRNAの生合成に特化している。 miRNA前駆体は，その配列こそ多様であるものの， 3 突出末端，二十数塩基程度の二本鎖状のステム部分，一本鎖状のループ部分からなる特徵的なへア ピン型の構造をもつ。本研究により，ショウジョウバエのDicer－1はヘアピン の両端にあたる3 突出末端と一本鎖ループ部分を認嘓し，その距離を正確に測

ることで，全体として正しい「形」を持ったmiRNA前駆体のみを認識し切断 することが明らかとなった。

さらに，種々の欠失変異体を用いた解析から， N 末端に存在する機能未知で あったヘリカーゼドメインが，一本鎖ループ部分の認識に直接関与している可能性が強く示唆された。一方で，ヒトの Dicer は，ショウジョウバエ Dicer－1 の様な厳密な「形」の認識を行っていないことが確認された。

以上の結果は，Dicerタンパク質の性質を明らかにし，miRNAが作り出され るしくみの基礎的な理解を深めるものである。特に，ヘリカーゼドメインの構造機能と，Dicer の多様な基質認識機構との間に強い相関があることを見 いだしたことは，今後の Dicer の機能構造解析の基盤となる知見であると評価できる。同時に，本研究は，今後様々な生物において人工的な miRNAを設計する際の指針となるものである。

なお，本論文において Dicer－1 のノックダウン実験および pre－let－7 の細胞内発現コンストラクトの作成は，東京大学分子生物学研究所の泉奈津子博士， miRNA 前駆体構造の統計的解析はフランストゥールーズ大学の Hervé Seitz博士との共同研究であるが，論文提出者が主体となって解析及び検証を行っ たものであり，論文提出者の寄与が十分であると判断する。

以上の理由から，博士（生命科学）の学位を授与できると認める。

