i LN DB F

EXTENDING THE JAVA PROGRAMMING LANGUAGE
FOR EVOLVABLE COMPONENT INTEGRATION
(E(LATREZR 2 v N—R > MRE D2 D Java 71 7T I v VS FELE)

By
Johan Thomas Nystr ~om Persson

——Z2frhb YLV H—Nnr A

A Doctor Thesis/TH+=7

Submitted to the Graduate School of the University of Tokyo
on December 15, 2011
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Information Science and Technology in Computer Science
Thesis Supervisor: Shinichi Honiden ANl EH-—

Professor of Computer Science

ABSTRACT

In the last few decades, software systems have become less and less atomic, and

increasingly built according to the component—based software development paradigm:
applications and libraries are increasingly created by combining existing libraries, components
and modules. Object—oriented programming languages have been especially important

in enabling this development through their essential feature of encapsulation:

separation of interface and implementation. Another enabling technology has been the
explosive spread of the Internet, which facilitates simple and rapid acquisition of software
components. As a consequence, now, more than ever, different parts of software systems

are maintained and developed by different people and organisations, making integration

and reintegration of software components a very challenging problem in practice.

One of the most popular and widespread object—oriented programming languages

today is the Java language, which through features such as platform independence, dynamic
class loading, interfaces, absence of pointer arithmetic, and bytecode verification,

has simplified component—-based development greatly. However, we argue that Java encapsulation,
in the form supported by its interfaces, has several shortcomings with respect

to the need for integration. API clients depend on the concrete forms of interfaces, which



are collections of fields and methods that are identified by names and type signatures

But these interfaces do not capture essential information about how classes are to be used,
such as usage protocols (sequential constraints), the meaning and results of invoking a
method, or useful ways for different classes to be used together. Such constraints must be
communicated as human—-readable documentation, which means that the compiler cannot

by itself perform tasks such as integrating components and checking the validity of an
integration following an upgrade. In addition, many trivial interface changes, such as

the ones that may be caused by common refactorings, do not lead to complex semantic
changes, but they may still lead to compilation errors, necessitating a tedious manual
upgrade process. These problems stem from the fact that client components depend

on exact syntactic forms of interfaces they are making use of. In short, Java interfaces
and integration dependencies are too rigid and capture both insufficient and excessive
information with respect to the integration concern.

We propose a Java extension, Poplar, which enriches interfaces with a semantic label
system, which describes functional properties of variables, as well as an effect system.
This additional information enables us to describe integration requests declaratively using
integration queries. Queries are satisfied by integration solutions, which are fragments
of Java code. Such solutions can be found by a variety of search algorithms; we evaluate
the use of the well-known partial order planning algorithm with certain heuristics for
this purpose. A solution is guaranteed to have at least the useful effects requested

by the programmer, and no destructive effects that are not permitted. In this way,

we generate integration links (solutions) from descriptions of intent, instead of making
programmers write integration code manually. When components are upgraded, the

integration links can be verified and accepted as still valid, or regenerated to conform
to the new components, if possible. The design of Poplar is such that verification and
reintegration can be carried out in a modular fashion. We argue that Poplar provides

a sound must—analysis for the establishment of labels, and a sound may-analysis for the
deletion of labels. We provide a formalisation of Poplar, which is based on Middleweight
Java (MJ).We describe an implementation of a Poplar integration checker and generator,
called Jardine, which compiles Poplar code to pure Java. We evaluate the practical
applicability of Jardine through a case study, showing that significant flexibility in both
syntactic and semantic evolution can be achieved.

A L

ZOAER, VT MU 2 TIEENFMTIER SN D Z T TR, a R —x
FAR=ZBAFENT H A DMIEDSWTHEEINDL Z EDBEI TS, 2FED, 77UV r—T =
VRTATTIN, BMEOTA T T IVRLarR—F3 2 FRETY 2 — VEAHMAAE TERS
NHDOThHD, A7V MaM7T w77 I V75X, 20X 2R ETaEIcT
HIEOITFICEBERERIZRE LT, v, kbbb ¥ —7 oA R LFHE



BT DI L BT ORENLRHEREL LT T\ DL THD. Zoftis, f v F—F v
FOBEEHREICLY, Y7 b =T arAR—3x 2 FBRHENOIEICATTEDH LI
ol bbarR—Ry FR—AFBEREIE TN D, TORRIIETIE, 1»OTR
MoTIEE, 1 DDV 7 M =T VAT LDOR &2 OEFTN, Ble o Nk k- TR -
RFSND LIRS TETEY, Y7 =T aR—3xr bOBEHKEDBLEN
ICFEFNTRE M E 7o > TN B,
SHEOLNZDRHVILBHEND AT V27 MeIAIT 07T I v I SiED 23 ]ava
SHETHDH. FORETHD, TT v N7k —DIKENE, B Y T ADFERIARIR, A
H—T 2 A ADMFA, RA EZEWR N L FLTAAS ha— FRIER EI2E - T,
AU R—F Y R APPSR E S Lo o7, L LR bTka i, HERcky
THERBEREL W O B RTC, Java OB 72 MMEFRRWL O ORFINH 5 L& 2T
Wb, Fiux, B 7TeMEGFARA v H—T = ADHAIC L o TR - SR TS
ZEITHET D, BRI D L, A U F—T oA RFLARERIOT 4 — LV R E, Bl
EEVEORIERE SN A Y v RIZL o TR ENDDEN, 77 ANRED K5I
ENDHRENL V) EEREREZRITHZ LN TE RV, 20X ) 2Edicix, FIHR
D7 v kv (ETIEFICET 261%0), A Yy FEBOEROMEER, 50 7 2%
EGEDFEER ENEEND. Z6ofKIE, AMRFTEL LTEEs AR
BT, o Tar A IRASNTaYR—FR U MEHAELIED, Ty 77 L—FRIZHES
MEDOEBMETF =y 7 LTV THZEIEFIAARTHD. b, I<HHV 7772
VIR THELD LR A L F—T = A ADEEDRNNIL, EHEREERROE
FEESTOWRWNTHENb BT, a v M LT —%25|E BT HL0REHEHY, Z0
L BRG AT RE R FIEECOBERKNE LR D, ZAOLOMENELHBL, 77
AT haryR—=x2 b, FIHTHA B 7 2 — ZADIEMER SCERZRTERITKRE L T
HZEIZHDB., DFEV, Java DAV E—T 2 A ALHEE L OBRITIFEKR THY T, 2D
fi R A RO LFEZ KRBT DERDA T ERSTZVIBRIL 2720 FTHDTHS.
Fx IFPoplar &\ ) Java OILEZIRZET 5, Poplar TlE, BRI T LT AT A
BBEANTLHILT, A7 2= 2 L0KRBEERLDOL LTS, TULY AT A
L0, BEOMENWELEZ 7 27 NVATLAERRTDHZENTED. ZoBMES
ERICE T, A7V 2FALTCESNCHAOEREZRIT 5 Z L3k
5, MAE7TZVIE, SEIERBERETNLITY ALK TR Z R TEX 50N, Fxld,
<N IE/FE T =0 773 XN, ZORMDOEDDHHE 2—U AT 4 v
JHEEANLIELOEFHEL TN D, 7= VT D, 7vn s T7~0ERT 56k
MEF->Z & &, FTENTWRWEERIENZRFTZRWZ LR RiEsnd. 20X 51T
LT, 7l I<ICTFEETHREDTODa— ReENELOTIERL, BERORTBETH
LG TV ORERDDZETa— REAERTHIENTEDL, A R—RV MR T v
T LU= RSN EE, MAEDTOHDOY U IITREECNT 5 2 ENTE, KRE L TEL
WHDELTZITANGNDD, 720X, AIERLHT LV I R—F MIEAET S LD
ICFHERR S D, Poplar 1%, MEEEFRANETY 27 —IfTbS L) ICEHF SN TN,



Fe & IZPoplar X7 ~VUL DR EDT- O/ must—analysis &, T-ULDREDT-H DS
7fmay-analysis %17 9. Poplar O L ZMiddleweight Java(M]) IZHEWTITH. FD
FEEL LT, MAMREIRMOAEREZE TH D Jardine (ZOW T L, Poplar % HW\CRoab &
N2y 7 Ny =T ZflifeipJava 70 7T AT 52 L E2RT. WL OO FEFIRFIEIC
£V, Jardine DOIFEFEAILMEH FIREMEZ M L, M50 B O M IZIS 1T D Fik A EBL
TELZ e ZmT.



