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ABSTRACT

In the last few decades, software systems have become less and less atomic, and

increasingly built according to the component—based software development paradigm:
applications and libraries are increasingly created by combining existing libraries, components
and modules. Object—oriented programming languages have been especially important

in enabling this development through their essential feature of encapsulation:

separation of interface and implementation. Another enabling technology has been the
explosive spread of the Internet, which facilitates simple and rapid acquisition of software
components. As a consequence, now, more than ever, different parts of software systems

are maintained and developed by different people and organisations, making integration

and reintegration of software components a very challenging problem in practice.

One of the most popular and widespread object—oriented programming languages

today is the Java language, which through features such as platform independence, dynamic
class loading, interfaces, absence of pointer arithmetic, and bytecode verification,

has simplified component—-based development greatly. However, we argue that Java encapsulation,
in the form supported by its interfaces, has several shortcomings with respect

to the need for integration. API clients depend on the concrete forms of interfaces, which



are collections of fields and methods that are identified by names and type signatures

But these interfaces do not capture essential information about how classes are to be used,
such as usage protocols (sequential constraints), the meaning and results of invoking a
method, or useful ways for different classes to be used together. Such constraints must be
communicated as human—-readable documentation, which means that the compiler cannot

by itself perform tasks such as integrating components and checking the validity of an
integration following an upgrade. In addition, many trivial interface changes, such as

the ones that may be caused by common refactorings, do not lead to complex semantic
changes, but they may still lead to compilation errors, necessitating a tedious manual
upgrade process. These problems stem from the fact that client components depend

on exact syntactic forms of interfaces they are making use of. In short, Java interfaces
and integration dependencies are too rigid and capture both insufficient and excessive
information with respect to the integration concern.

We propose a Java extension, Poplar, which enriches interfaces with a semantic label
system, which describes functional properties of variables, as well as an effect system.
This additional information enables us to describe integration requests declaratively using
integration queries. Queries are satisfied by integration solutions, which are fragments
of Java code. Such solutions can be found by a variety of search algorithms; we evaluate
the use of the well-known partial order planning algorithm with certain heuristics for
this purpose. A solution is guaranteed to have at least the useful effects requested

by the programmer, and no destructive effects that are not permitted. In this way,

we generate integration links (solutions) from descriptions of intent, instead of making
programmers write integration code manually. When components are upgraded, the

integration links can be verified and accepted as still valid, or regenerated to conform
to the new components, if possible. The design of Poplar is such that verification and
reintegration can be carried out in a modular fashion. We argue that Poplar provides

a sound must—analysis for the establishment of labels, and a sound may-analysis for the
deletion of labels. We provide a formalisation of Poplar, which is based on Middleweight
Java (MJ).We describe an implementation of a Poplar integration checker and generator,
called Jardine, which compiles Poplar code to pure Java. We evaluate the practical
applicability of Jardine through a case study, showing that significant flexibility in both
syntactic and semantic evolution can be achieved.
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