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Abstract 

Alternative Splicing (AS) plays a major role in generating the diversity of transcriptome and proteome, 

and affects development and disease by producing structurally and functionally distinct mRNA and 

protein variants. Transcripts from approximately 95% of multi-exon human genes are spliced in more 

than one way, and in most cases the resulting transcripts are variably expressed between different cell 

and tissue types. The second generation sequencing technology is now opening unprecedented routes to 

address the analysis of entire transcriptome. However, accurate quantification of the abundances of 

transcripts still remains a big challenge. We have developed a global approach that allows the 

identification and quantification of splicing variants derived solely from the read count and the base 

count in RNA-Seq data. It is based on an explicit statistical model and enables the identification of 

splicing variants using the known gene annotation or the assembled transcript structure information, as 

well as the relative quantification. To test our method, we generated and analyzed 120 million paired 

75-bp artificial mouse RNA-Seq reads from about 18,000 various transcripts.  

 

Analysis Pipeline 

Our analysis can be summarized into 4 main phases: Mapping Phase, Counting Phase, Identifying 

Phase and Quantifying Phase. In Mapping Phase, the align tools, eg. Tophat, are applied to map the 

short RNA-Seq reads to a genome reference to generate ordinary reads and splice reads; In Counting 

Phase, two different calculations are used to count the number of mapped reads and the number of 

mapped bases for a given location respectively. Moreover, in order to simply all the alternative splicing 

events into exon skipping, a special subexon matrix was generated. If an exon appears in two or more 

isoforms at different lengths, we divide this exon into several different parts and treat each part as a 

subexon. Then according to this subexon matrix the structure of each transcript is identified and 

described, which means if this transcript contains a subexon, the value of this subexon in the matrix can 

be set to 1, otherwise to 0. The count calculation is preformed depending on the subexon matrix. 

During the counting phase, the base count is calculated separately for ordinary reads and splice reads in 

order to maintain the valuable splicing information which is of much importance to estimate isoform 

expression level; In Identifying Phase, two strict assumptions help us filter noisy incorrectly expressed 

transcripts caused by mapping errors or incomplete express transcripts due to low read coverage. One 

is “If one exon was not expressed, the whole transcript was not expressed.” The other one is “If one 

junction between two exons was not expressed, the whole transcript was not expressed.” Perhaps these 

two assumptions are too strict to succeed capturing the low expressed transcripts; In Quantifying Phase, 

we developed a novel global approach, a probabilistic model that uses information of both normal 
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reads and splice reads in RNA-Seq data to perform more accurate estimations of transcript expressions. 

 

Results 

Analysis with a known gene reference 

FluxSimulator totally selected 15,333 genes and 18,143 isoforms for mouse 20M dataset, 15,475 genes 

and 18,330 isoforms for mouse 40M dataset, 15,524 genes and 18,411 isoforms for mosue 60M dataset, 

13,531 genes and 18,425 isoforms for human 60M dataset. The total number of mouse expressed 

transcripts selected by FluxSimulator did not rise along with the increasing sequenced reads, which 

indicated that the expression of each transcript grew up. Totally we identified 7,279 genes and 8,090 

isoforms in mouse 20M dataset, 8,014 genes and 8,928 isoforms in mouse 40M dataset, 8,399 genes 

and 9,452 isoforms in mouse 60M dataset respectively, as well as 5,308 genes and 6,535 isoforms in 

human 60M dataset. Cufflinks identified 11,602 genes and 12,448 isoforms in mouse 20M dataset, 

12,401 genes and 13,317 isoforms in mouse 40M dataset, 12,660 genes and 13,579 isoforms in mouse 

60M dataset respectively, as well as 10,496 genes and 11,946 isoforms in human 60M dataset. 

 Mouse Human 

Dataset 20M 40M 60M 60M 

Simulated Genes 15,333 15,475 15,524 13,531 

Simulated Transcripts 18,143 18,330 18,411 18,425 

Cufflinks Genes 11,602 12,401 12,660 10,496 

Cufflinks Transcripts 12,448 13,317 13,579 11,946 

Identified Genes 7,279 8,014 8,399 5,308 

Identified Transcripts 8,090 8,928 9,452 6,535 

Table 1. Summary of simulated results and estimated results 

 

The comparison results of mouse 60M dataset reported that most cufflinks results were underestimated 

the expression level of isoforms, with only 325 accurate predictions under the error rate below 10%. In 

addition, 6,176 non-expressed transcripts were incorrectly predicted by Cufflinks giving estimated 

expression values, while 1,276 false positive results existed in Cufflinks results. Our results showed 

higher correlation value than cufflinks, which means the results were more similar with the true 

expression levels. 9,316 non-expressed transcripts were incorrectly predicted by our method. Although 

more false negative estimations existed in our results due to the strict assumptions in the Identifying 

Phase, only 406 false positive estimations are included in our results.  Furthermore 4,515 out of 9,049 

transcripts were properly estimated under the error rate below 10%, 49.8% accuracy, much better than 

Cufflinks. However Cufflinks captured more transcripts with a few mapped reads than our method. 

Genes with multiple isoforms were specially derived from the mouse 60M results to access the 

expression ratio estimations, 8,126 isoforms obtained from Cufflinks results, 4,699 isoforms from our 

results. Cufflinks had 4,125 (about 51%) well-estimated results with error rate below 10% while 4,150 

(about 88%) by our method. Besides, our expression level estimations were also more accurate with 

0.814 correlation value than Cufflinks estimations with 0.320 correlation value which contained some 

well-estimated expression percentage but with inaccurate expression levels. For example, Rasgrf1 had 

one long isoform and one short isoform. Both our method and Cufflinks gave the accurate expression 

percentage estimation, however the expression levels that Cufflinks produced were much lower than 

our estimations and true expression levels. 
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Figure 1. Expression level comparison between estimated values calculated by Cufflinks and our 

method and true values calculated by simulated expressions when using a known gene reference. 

Epression level raito between estimated values calculated by Cufflinks and our method and true values 

calculated by simulated expressions when using a known gene reference. 
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Analysis with a de novo assembled reference 

In order to compare with Cufflinks results, we also used Trinity, a novel method for the efficient and 

robust de novo reconstruction of transcriptomes from RNA-seq data, to help assemble short RNA-Seq 

reads. First, Trinity was applied to perform assembly; Then, those assembled transcripts were mapping 

to the genome reference by Blat; At last, the identification and quantification were analyzed by our 

global approach. Here only 60M dataset were analyzed. In the first assembly step, Trinity generated 

more transcripts (23,781) than the simulated transcripts (18,793), indicating the results of Trinity 

included much more false positive data than Cufflinks which reconstructed 12,058 transcripts. After 

filtering the transcripts which were not included in the gene annotation reference, Cufflinks only kept 

2,139 transcripts while Trinity kept 7,204. Their distributions of expression levels were almost similar 

with the true expressions. Still most cufflinks results were underestimated the expression level of 

isoforms, with only 132 accurate predictions under the error rate below 10%. 5,231 false negative 

estimations and 51 false positive estimations remained in the Cufflinks results. Our results showed 

3,594 transcripts were properly estimated under the error rate below 10%. 294 false negative 

estimations and 58 false positive estimations remained in the results. Although Trinity generated much 

more false positive noises, it captured many isoforms that cufflinks failed to detect, about 5,000 

transcripts in mouse 60M dataset. Genes with multiple isoforms were specially derived from the 60M 

results to access the expression ratio estimations, 485 isoforms obtained from Cufflinks results, 645 

isoforms from our results. Cufflinks had 303 (about 62.4%) well-estimated results while 416 (about 

64.5%) by our method. The accuracies of percentage estimations were almost the same, however, our 

method provided more accurate expression level estimations than Cufflinks. 

 

Conclusion and Discussion 

Through the comparison between Cufflinks estimations and true expression levels, it was clear that 

Cufflinks underestimated the expressions of most transcripts. Two possible factors may lead to the 

underestimation of Cufflinks. One is the mapping problem, which Cufflinks estimation depends on. In 

this study, we use Tophat as our main mapping tool that was developed by the same group of Cufflinks. 

Since Cufflinks requires the mapped fragments to estimate the transcript abundance, the case of only 

one fragment read mapped to the genome reference cannot be used in Cufflinks abundance estimation. 

As we discuss above, only 36% of total simulated reads in mouse 60M dataset were perfect fragment 

alignments, which may cause the underestimation of Cufflinks. However, when we only use these 

perfect fragment alignments to estimate transcript abundance by Cufflinks, the results were still 

underestimated although the estimations turned better. The other reason that caused the 

underestimation may be the Poisson Model applied by Cufflinks. However, the authors of Cufflinks did 

not discuss about how they calculated the fragment count, therefore, we cannot find the real reason of 

underestimation. In our study, we encouraged to apply the base count instead of the read count. Read 

Count overestimates the counts of short exon, because the read length is longer than the exon size. 

Because the subexon matrix was applied in our statistical model, the frequency of short exons became 

much higher. Base Count played an essential role in our estimation of transcript expression levels. Our 

results illuminate that our global approach was more accurate than Cufflinks wide-used currently. Our 

results provide a probabilistic model for RNA-seq analysis, offer more accurate isoform expression 

estimation and develop a pipeline for studies of gene and isoform expression. 

 

 


