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Graphene is a monoatomic layer material composed of carbon atoms, arranged in the honeycomb lattice 

structure. It has been studied intensely as a two-dimensional electronic system easy to create and observe, since its 

first experimental isolation by Geim and Novoselov in 2004. Charge carriers on monolayer graphene can be 

described as massless Dirac fermions at long wavelength limit in the vicinity of two “Dirac points” in the 

momentum space, known as the “Dirac cone (valley)” structure. This nature makes graphene attractive from the 

viewpoint of quantum field theories as well as of materials physics. 

However, the Dirac cone picture may break down in the presence of a strong electron-electron interaction, 

where the excitations are more likely to be scattered to the momentum region far from the Dirac cones. Such a 

strong coupling is supposed to be achieved in a vacuum-suspended graphene, where the Coulomb interaction is 

effectively enhanced from the ordinary quantum electrodynamics (QED), by the discrepancy between the 

propagation speed of the charge carriers (Fermi velocity, vF=c/300) and that of photons (speed of light, c). Under 

such a strong electron-electron interaction, some symmetry of the system may get spontaneously broken, driving 

the system into an excitonic insulator. This mechanism is analogous to the spontaneous breaking of chiral 

symmetry and dynamical fermion mass generation in strongly coupled field theories, such as quantum 

electrodynamics (QCD). In graphene, however, its microscopic lattice structure may host various gap-opening 

patterns (see Fig.1): 

(a) Charge density wave (CDW): One triangular sublattice of the honeycomb lattice is more occupied by 

electrons than the other sublattice. It breaks the discrete chiral symmetry defined by two sublattices. It can be 

induced explicitly by some external substrates, like silicon carbide or boron nitride. 

(b) Spin density wave (SDW): One sublattice is occupied by electrons with a certain spin direction, while the 

other sublattice by the opposite spin direction. The system shows antiferromagnetism. It breaks both the 

sublattice symmetry and the spin SU(2) symmetry. 

(c) Kekulé distortion: Nearest-neighbor hopping amplitude becomes non-uniform with a certain pattern larger 



than the unit cell, breaking the translational invariance partially. It can be induced explicitly by some adatoms 

on the layer. 

(d) Haldane/Kane-Melé flux: Next-to nearest neighbor hopping with a complex amplitude is induced by an 

effective “magnetic flux”, breaking the time-reversal symmetry. Haldane flux preserves the SU(2) spin 

symmetry, inducing an anomalous quantum Hall conductivity. Kane-Melé flux, which breaks the spin 

symmetry, corresponds to spin-orbit interaction, and induces a so-called “quantum spin Hall” effect. 
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Fig.1: Schematic picture of the gap-opening orders characteristic to the honeycomb lattice. 

 

The interplay among these ordering patterns, induced either spontaneously or externally, is still little known under 

the sufficiently strong electron-electron interaction. Motivated by those problems in monolayer graphene, we study 

the phase structure of graphenelike systems with a sufficiently strong electron-electron interaction in this thesis. We 

assume that the interaction is mediated by the electromagnetic field like quantum electrodynamics (QED), and 

investigated the interplay effects among various ordering patterns (either spontaneous or explicit) listed above. 

 

 In Section 2, we construct a lattice gauge theory model defined on the graphenelike honeycomb lattice. We 

convert the conventional tight-binding Hamiltonian into path integral formalism, and define the lattice effective 

action, with the effect of electron-electron interaction included in terms of U(1) gauge field. This is the lattice 

gauge theory description of the so-called “reduced QED”, where the fermions are confined in the 

(2+1)-dimensional plane, while the photons (gauge field) propagate in the (3+1)-dimensional space. This effective 

model can host the ordering patterns shown above, which are 

characteristic to the honeycomb lattice, except for those 

preserving the full SU(2) spin symmetry. 

 

In the first half of Section 3, we observe the phase 

structure of the graphenelike gauge theory constructed above 

by using the techniques of strong coupling expansion of 

lattice gauge theory, inspired by the analyses of QCD phase 

structure. Strong coupling expansion decomposes the 

long-range Coulomb interaction into the sum of 4-fermi local 

interaction terms. The leading order in the expansion gives the 

on-site interaction, which may lead to the spontaneous 

sublattice symmetry breaking (SLSB), while the next-to leading 

order yields the nearest-neighbor repulsion, which can contribute to the renormalization of the Fermi velocity and 

Fig.2: Phase diagram displaying the competition 

among spontaneous orders: SLSB, KD1 and KD2. 

Vertical axis represents the strength of leading order 

(on-site interaction), while the horizontal axis the 

next-to leading order (nearest neighbor repulsion). 



the spontaneous Kekulé distortion. We map the phase diagram of the system with these spontaneous orders at the 

mean-field level, by varying the ratio between the amplitudes of terms in the expansion (see Fig.2). It should be 

noted that the Kekulé distortion is classified into two phases (KD1/KD2), characterized by the sign of its amplitude. 

The difference of two Kekulé distortion phase originates from the parabolic band far from the Dirac points, which 

is neglected in the Dirac cone approximation. 

 

In the second half of Section 3, we focus on the 

competition between the spontaneous sublattice symmetry 

breaking seen above and the externally introduced orders, 

within the strong coupling limit of lattice gauge theory. Here 

we incorporate Kekulé distortion and Kane-Melé flux 

(spin-orbit interaction) as the explicit orders. In the presence 

of a sufficiently large Kekulé distortion, the spontaneous 

order is suppressed and the sublattice symmetry gets restored, 

which agrees with the analysis within the Dirac cone 

approximation. On the other hand, when the distortion 

amplitude is small enough, the sublattice symmetry breaking 

order grows quadratically as a function of the distortion 

amplitude, which cannot be seen within the Dirac cone approximation (see Fig.3). Therefore, microscopic effect 

from the lattice structure is crucial for the interplay of these orders, as long as the Kekulé distortion amplitude is 

small compared to the energy scale characterized by the lattice structure. 

 

The spin-orbit interaction, which breaks the sublattice symmetry, SU(2) spin symmetry, and the valley 

(pseudospin) inversion symmetry, also competes with the 

spontaneous antiferromagnetic order, which breaks the 

sublattice and spin symmetry but preserves the valley 

inversion symmetry. The spin-orbit coupling tilts the 

antiferromagnetic order towards the XY-plane, away from 

the direction originally pointed by the spin-orbit term. Such 

an interplay between the normal antiferromagnetic order and 

the spin-orbit coupling occasionally shifts the topological 

phase structure of the system, which can contribute to 

quantum spin Hall effect (see Fig.4). This phase structure is 

also related with the parity-breaking phase of lattice QCD 

with Wilson fermions, which is called “Aoki phase”. We can 

give a conjecture about the phase structure of quantum spin 

Hall system at finite coupling, from the analogy with the phase structure of lattice QCD. 

 

Fig.3: Behavior of spontaneous SLSB order σ(Δ) in the 

presence of the external Kekulé distortion Δ. “Full band” 

is calculated with the full band structure, while “Dirac 

cone” is obtained by Dirac cone approximation. 

Fig.4: Phase diagram in the presence of spin-orbit coupling 

(t’) and the normal antiferromagnetic (AF) order (σ1). 

There appears a new “tilted AF” phase by the effect of 

electron correlation. 



 In Section 4, we attempt to give a clue about the 

breaking/restoration of the exact SU(2) spin symmetry in the 

honeycomb lattice system, which cannot be observed in the 

lattice gauge theory due to the artifact of lattice 

discretization. Here we employ the extended Hubbard model, 

which includes the 4-point interaction terms similar to those 

derived from the strong coupling expansion of lattice gauge 

theory. We observe the phase structure of this model by 

solving the variational gap equations including CDW and 

SDW orders. Variational gap equation, which is optimized on 

the basis of Jensen-Peierls inequality, is advantageous over 

the ordinary mean-field gap equation derived by 

Hubbard-Stratonovich transformation in that competition 

among various order parameters can be taken into account. In the absence of the external staggered potential, the 

phases are classified into CDW, SDW, and semi-metallic phases. The on-site (Hubbard) repulsion favors SDW, 

while the nearest-neighbor (NN) repulsion favors CDW. The external staggered potential enhances the CDW phase, 

suppressing the SDW phase (see Fig.5). The spin SU(2) symmetry is broken in the SDW phase, and the band 

degeneracy of two spin states is correspondingly shifted in the presence of the external staggered potential: band 

gap amplitudes and Fermi velocities of the electrons with up/down spin become different (see Fig.6). This 

phenomenon may have an effect on the spin transport, such as the filtering of spin components. 

 

 

We expect that all the analytical results above can be tested experimentally by the direct observation of band 

structure like angle-resolved photoemission spectroscopy (ARPES), or the measurement of electronic transport 

properties like charge/spin Hall effects. Our results can be applied to the correlated fermion systems on the 

honeycomb lattice, such as graphene, cold atoms on optical lattice, and the topological insulators, with a small 

modification. The application of our methods to the bilayer graphene systems, where the spontaneously gapped 

phase has already been observed experimentally, is a future problem. 

Fig.6: Behavior of the gap amplitude Δσ (left) and the Fermi velocity renormalization factor Zσ 

for each spin state σ=↑,↓, as functions of the external staggered potential m, where the on-site 

interaction U=6.0t and the NN interaction V=0.5t. Band degeneracy is shifted in the SDW phase. 

Fig.5: Phase diagram of the extended Hubbard model, with 

the on-site (Hubbard) repulsion U and the NN repulsion V. 

External staggered potential m eventually suppresses the 

SDW phase. 


