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Introduction

More than 460 natural compounds possessing the dihydro-p-agarofuran (1) skeleton with a wide
range of oxidation state has been isolated." Although the poly-oxygenated natural compounds possess the
same tricyclic core, they show different biological activities against different targets. For example, while
hyponine B (2) shows highly selective anti-HIV activity against H9 lymphocytes,? and emarginatine B (3)
possess cytotoxicity against human KB cells.>  Meanwhile, the densely oxidized dihydro-B-agarofuran
skeleton of 2 and 3, characterized by 11 contiguous stereocenters 4 of which are tetrasubstituted and a

14-membered macrocycle, poses

a formidable synthetic challenge. AP
To develop an efficient synthetic NSNS *
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synthetic target because it
possess all the pivotal structural
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Figure 1. Agarofuran compounds.
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The synthetic plan of 4 is shown in Scheme 1. Since the enantioselective synthesis of 7 had
already been developed in my master’s program, it was planned that the combination of two strategies,
construction of the agarofuran tricyclic core and functionalization of the A-ring would establish flexible
synthetic route to densly oxygenated agarofuran compounds. In this thesis, 1) reexamination of the
Diels-Alder reaction, 2) synthesis of agarofuran tricyclic core, and 3) functionalization of A-ring is
discussed.

Scheme 1. Synthetic plan of 4.
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Diels-Alder reaction

First, base-catalyzed Diels-Alder reaction was reexamined (Scheme 2). Enantio-pure dienophile
10 was synthesized from D-mannitol in 5 steps utilizing anti-selective Morita-Baylis-Hillman reaction.
The

Diels-Alder reaction between 10 and 11 under quinidine catalyst proceeded to afford enantio-pure 7 in high

Meanwhile, diene 11 was also synthesized from D-mannitol (8) in 5 steps in a reproducible manner.

selectivity.
Scheme 2. Diels-Alder reaction of diene 10 and 11.
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To expand the scope of the base-catalyzed Diels-Alder reaction, tri-substituted dienophile 12 was

subjected to the Diels-Alder conditions with diene 11.
obtained with high selectivity.

It was found that Diels-Alder adduct 13 can be

In this reaction, the multiple functional groups and four contiguous

stereocenters two of which are tetrasubstituted were introduced effectively.



Scheme 3. Diels-Alder reaction of trisubstituted olefin 12.
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Construction of agarofuran tricyclic core

Next, agarofuran tricyclic core was successfully constructed from Diels-Alder adduct 7 by an
ozonolysis/intramolecular aldol reaction strategy (Scheme 4). The conversion includes 1) reductive
removal of bromide and ether ring-opening reaction (Booard elimination, 17 - 18), 2) construction of
reactive P-keto lactone utilizing the internal hydroxy group for tentative protection, and 3) one-pot
ozonolysis/intramolecular aldol reaction to construct B ring (23 = 25).

Thus, highly functionalized compound 25 with agarofuran tricyclic core, possessing five
stereocenters two of which are tetrasubstituted, was successfully synthesized in 6.6% yield over 13 steps
from the Diels-Alder adduct 7.

Scheme 4. Synthesis of agarofuran tricyclic core.
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Functionalization of A-ring

On the other hand. full functionalization of A-ring was successfully achieved as shown in Scheme
5. The key factor for the success of stereoselective transformations was the precise control of electron
density at the A-ring double bonds. Thus, introduction of silyl enol ether (27 - 28) enabled the
stereoselective introduction of hydroxy group at the C1 position from the upper face (28 = 29). Another
definitive strategy was the use of boronate as an easily detachable protecting group, enabling the selective
reactions at the C2 functional groups (26 = 28).

Accordingly, compound 32, A-ring fully functionalized with nine contiguous stereocenters three
of which are tetrasubstituted, was synthesized from Diels-Alder adduct 7 in 21% yield over 11 steps.

Scheme 5. Full-functionalization of A-ring.
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Summary
To summarize, three methods, Diels-Alder reaction (8 = 10 and 11 — 7), construction of tricyclic
core (7 = 25), and functionalization of A-ring (7 = 32), have been established for the synthesis of highly

oxygenated agarofuran compound 4.
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