学位論文要旨



No 125308
著者(漢字) 陳,杰智
著者(英字)
著者(カナ) チェン,ジィエジィ
標題(和) マルチシリコンナノワイヤトランジスタにおけるキャリア移動度特性に関する研究
標題(洋) Investigations of Carrier Mobility Properties in Multiple Silicon Gate-All-Around Nanowire MOSFETs
報告番号 125308
報告番号 甲25308
学位授与日 2009.09.28
学位種別 課程博士
学位種類 博士(工学)
学位記番号 博工第7152号
研究科 工学系研究科
専攻 電子工学専攻
論文審査委員 主査: 東京大学 教授 平本,俊郎
 東京大学 教授 櫻井,貴康
 東京大学 教授 高木,信一
 東京大学 准教授 藤島,実
 東京大学 准教授 高宮,真
 東京大学 准教授 竹中,充
内容要旨 要旨を表示する

As the size of very large scaling integration (VLSI) scales down into deep sub-micron regime, conventional device scaling concept loses its effect and new physics turn to dominate device performance. Although we have achieved performance enhancement during the device scaling down, it is clear that there is a limit at the end of scaling down and we can not just diminish the device size forever. Accordingly, in ITRS, three different but related concepts are proposed: "More Moore", "More than Moore", and "Beyond CMOS". Until now, we still have no concrete image that what will happened in "Beyond CMOS", but it is clear that we need to achieve further performance enhancements in Si-based devices before we enter into "Beyond CMOS" era in recent future.

Nanowire is a special structure that owns two-dimensional quantum confinements that plays an important role in "More Moore". As a promising candidate for future VLSI technology, nanowire has attracted much more and more attention in recent years. Carrier mobility is an important factor that dominates the device transport performance, such as ON current. To understand more details about nanowires transport characteristics and figure out effective methods to obtain performance enhancement, it is necessary to investigate carrier mobility properties in nanowires experimentally. However, for accurate mobility in nanowires, the main difficulty originates from the ultra-small capacitance of one single nanowire, as well as serious parasitic effects within the transport channel. In other words, the intrinsic capacitance of one single nanowire is difficult to be measured directly. Therefore, channel that contains multiple nanowires is necessary. So, how to fabricate multiple uniform nanowires and remove parasitic effects are challenging problems that need to be solved.

The basic objective of this work is to dig out the potential of Si-based nanowire MOSFETs and get further performance gain. To be particular, first of all, we need to propose a special device design to measure nanowire capacitance and achieve experimental mobility data in nanowires; then, one important problem we need to solve is how to remove parasitic resistance and capacitance in order to measure intrinsic mobility in nanowires; finally, based on the information we have obtained on carrier mobility characteristics in nanowires, effective ways on mobility or performance enhancement will be investigated.

In this paper, on the basis of split C-V method together with double Lm method, experimental and theoretical investigations on carrier mobility characteristics in silicon nanowires are described systematically. It is found that side surface orientation plays the key role that determinates the mobility modulation in narrower nanowires, as well as the surface roughness. To be particular, [100]/(100) is the optimum channel direction for nanowires nMOSFETs while [110]/(110) is the optimum channel direction for nanowires pMOSFETs. In wide nanowires, electron mobility approaches to universal curve in [100]/(100) nanowires while hole mobility approaches to the universal curve in [100]/(110) nanowires due to four identical surrounded surfaces with same orientations. For the same reason (side surface contribution), large mobility degradation is observed in narrower [110]/(100) nanowires nMOSFETs due to the increasing contribution from (110) side surface with low electron mobility, while mobility enhancement is observed in narrower [110]/(110) nanowires nMOSFETs due to the increasing contribution from (100) side surface with high electron mobility. As to [110]/(110) nanowires pMOSFETs, although larger contribution from (100) side surface with low hole mobility exist in narrower nanowires, surprisingly, high hole mobility still can be obtained in high Ninv, showing only a little degradation from wide nanowires. This is very impressive since the high Ninv region is very important for VLSI applications.

Furthermore, aiming at mobility enhancements, mobility modulations by uniaxial stress is also studied in both nanowire nMOSFETs and nanowire pMOSFETs. In nanowire nMOSFETs, electron mobility enhancement is observed in (110) nanowires and [100]/(100) nanowires by longitude tensile stress. In nanowire pMOSFETs, hole mobility increases by [100] tensile stress while decreases by [110] tensile stress. Since (100) surface has much high sensitivity to [110]-directed stress, if [110] compressive stress is applied, it is believed that large mobility enhancement can be obtained in [110]/(110) nanowires due to the large contribution from (100) side surface.

The results obtained in this thesis give us basic and useful image on carrier transport characteristics, shedding light on the structural optimization of silicon nanowire-based devices in future applications in "More Moore"

審査要旨 要旨を表示する

本論文は,「Investigations of Carrier Mobility Properties in Multiple Silicon Gate-All-Around Nanowire MOSFETs」(マルチシリコンナノワイヤトランジスタにおけるキャリア移動度特性に関する研究)と題し,英文で書かれている.本論文は,将来のデバイス構造として期待されるシリコンナノワイヤトランジスタのキャリア移動度に関する実験を論じたものであって,全6章より構成される.

第1章は「Introduction」(序論)であり,デバイス微細化のための三次元構造デバイスの必要性と,評価手段としての移動度の重要性についてまとめており,本論文の背景と目的を明確にしている.

第2章は,「Fabrication and Characterizations of Multiple Silicon Nanowire MOSFETs」(マルチシリコンナノワイヤMOSFETの作製と評価)と題し,移動度を測定するためのナノワイヤトランジスタアレーの作製プロセスについて述べるとともに,寄生効果を排して移動度を正確に評価する新手法について述べている.

第3章は,「Electron Mobility in Silicon Gate-all-around Nanowire nMOSFETs」(シリコンナノワイヤnMOSFETにおける電子移動度)と題し,ナノワイヤトランジスタにおける電子移動度のワイヤ幅依存性の実験結果について述べ,nMOSFETでは側壁の効果が非常に大きいことを明らかにしている.また移動度の低温測定を行い,移動度劣化機構について考察している.

第4章は,「Hole Mobility in Silicon Gate-all-around Nanowire pMOSFETs」(シリコンナノワイヤnMOSFETにおける正孔移動度)と題し,ナノワイヤトランジスタにおける正孔移動度のワイヤ幅依存性の実験結果について述べるとともに,正孔移動度においては側壁効果が重要ではなく,特に(110)面の[110]方向において非常に高い移動度が得られることを明らかにしている.

第5章は,「Transport Performance Enhancement in Silicon Gate-All-Around Nanowire MOSFETs by Uniaxial Strain」(一軸性ひずみによるシリコンナノワイヤMOSFETにおけるキャリア特性の向上)と題し,シリコンナノワイヤMOSFETにひずみを印加して移動度向上を達成するための最適面方位とワイヤ方向について論じている.

第6章は,「Conclusions」(結論)であり,本論文の結論を述べている.

以上のように本論文は,シリコンナノワイヤトランジスタにおけるキャリア移動度について系統的な実験を行い,その移動度決定機構を明らかにするとともに,最適のデバイス構成について論じたものであって,電子工学上寄与するところが少なくない.

よって本論文は博士(工学)の学位請求論文として合格と認められる.

UTokyo Repositoryリンク