学位論文要旨



No 126805
著者(漢字) ディサーナーヤカ セーマシンハ ウェーラーラタナゲー サンジーワ
著者(英字)
著者(カナ) ディサーナーヤカ セーマシンハ ウェーラーラタナゲー サンジーワ
標題(和) 酸化濃縮法を用いた(110)面Ge-On-Insulator (GOI)MOSFETの作製とその電気的特性に関する研究
標題(洋) Study on Fabrication of (110)-oriented Ge-On-Insulator (GOI) MOSFETs by Ge Condensation Technique and their Electrical Characteristics
報告番号 126805
報告番号 甲26805
学位授与日 2011.03.24
学位種別 課程博士
学位種類 博士(工学)
学位記番号 博工第7446号
研究科 工学系研究科
専攻 電子工学専攻
論文審査委員 主査: 東京大学 教授 高木,信一
 東京大学 教授 柴田,直
 東京大学 教授 平本,俊郎
 東京大学 教授 田中,雅明
 東京大学 准教授 杉山,正和
 東京大学 准教授 竹中,充
内容要旨 要旨を表示する

Continuous downscaling according to Moore's Law is the driving force behind the development of the high performance Complementary Metal Oxide Semiconductor Field Effect Transistor (CMOS) technology with high speed, low power and high integration density. However, non-conventional device structures and materials compatible with current Si platform are of a great concern as the technical boosters in leading edge, which are known to be appeared in the future generations of traditional Si technology. Especially in the sub-nm region, high attention has been paid to ultrathin-body Si-on-insulator (UTB SOI) structures towards further device scaling. On the othrehand, comparing with the early era of Si technology, nowadays it is a trend to treat the p- and n- type MOSFETs separately to relax the complexity of technical solutions, to constantly increase the performance with downscaling of CMOSFETs in the coming generations. Therefore, in this study, we set our objective to improve the performance of p-type MOSFETs (pMOSFETs) by introducing hole mobility enhancement factors throughout the proposals by channel engineering.

For improving the performance of pMOSFETs, Ge-on-insulator (GOI) structure has been regarded as a promising channel, because Ge provides 4 times higher bulk mobility than Si. Moreover, the enhancement of mobility by choosing the optimal channel direction/surface orientation has already been demonstrated for Si MOSFETs. As for Ge surfaces, simulation based studies have shown that <110> direction of (110) surface orientation is optimal for p channel Ge MOSFETs, because of the lower effective mass. On the other hand, ultra-thin body (UTB) structures on Si substrates are needed for realizing short gate length MOSFETS on the Si platform. One of the promising techniques to fabricate UTB GOI layers is the Ge condensation technique. However, fabrication of UTB (110) GOI layers is still challenging and the device operation of the MOSFETs has not been reported yet.

Towards the possible application as high mobility alternative channels for pMOSFET devices in the era of 22nm technology node and beyond, the aim of this study is to purpose the combination of three main mobility boosting technologies namely, ultrathin-body GOI structure, <110> channel direction of (110)-crystal orientation and the application of compressive strain to the channel by the viewpoint of channel engineering. In terms of demonstrating the superiority of 12-nm-thick (110)-oriented GOI pMOSFET devices and the physical interpretations to the structural and carrier transport properties, in this study, we have experimentally investigated their characteristics by utilizing the GOI channels fabricated by the Ge condensation technique, mainly focused on the following points.

A.) Characterization of (110)- GOI layers fabricated by the (conventional) Ge condensation technique.

B) Investigation of the effects of annealing in reducing the leakage current of GOI channels.

C) Analyses of the hole mobility dependence on channel direction, effective field and temperature in

(110)-GOI surfaces with insights to their physical mechanisms.

D) Application of compressive strain to GOI channels by the local Ge condensation technique and clarify the effect of window size on strain.

First, the epitaxially grown Si/Si0.7Ge0.3 (40nm) / (110)-oriented SOI structures as shown in Fig. 1(a) were utilized to fabricate GOI layers by the Ge condensation technique. During this, thermal oxidation was carried out for the initial structure, until the Ge content, confirmed by Raman Spectrometry, was increased up to 100%.The purity, orientation and strain of the fabricated GOI layers (Fig. 1(b)) were characterized by Secondary Ion Mass Spectroscopy (SIMS), Raman and X-ray Diffraction (XRD) analyses. The presence of the Ge related peaks only in the Raman and the XRD spectra confirms the existence of a pure GOI layer. We have also examined from SIMS measurements that the residual Si content of the GOI layers is less than 0.8%. The existence of (220) plane reflection in XRD and Transmission Electron Diffraction (TED) measurements have shown the evidences of (110)-Ge orientation. Additionally, it is also found from Raman and XRD measurements that the in-plane compressive strain in the (110) GOI layers is less than 0.1%, as similar with conventional results, suggesting the negligible impact of strain on mobility.

We have observed high leakage current between Source and Drain and a large positive threshold voltage shift in our GOI pMOSFETs, suggesting a high residual hole concentration which might be attributed to any crystal defects/dislocations or Fermi level pinning at BOX interfaces generated during the Ge condensation technique. As a solution, the effects of thermal annealing (N2), Forming gas annealing (H2+N2) and atomic Hydrogen annealing treatments were carried out to monitor the hydrogen-termination of dandling / active bonds. Their effects were monitored by Ion/Ioff improvement of Id-Vg characteristics of pseudo-GOI MOSFET structure Fig. 1(c). In order to have a systematic comparison and a better understanding of our results, the relationship between Ion/Ioffmin and the annealing temperature is summarized as a parameter of annealing ambient as in Fig. 2. It is clear that the thermal annealing provides almost no improvement on Ion/Ioffmin values as it keeps remain in the initial state at each temperature. On the other hand, introduction of hydrogen to the annealing ambient have shown an improvement of Ion/Ioffmin up to 450℃. Comparing with forming gas annealing, atomic hydrogen annealing has shown a better improvement at any temperature. This should be due to the fact that the atomic state of hydrogen is chemically more reactive than the molecular state so that the termination by atomic hydrogen happens much easier. If the temperature increases over 450℃, the Ion/Ioffmin decreases to the initial level neglecting the presence of hydrogen. However, it can be concluded that the atomic hydrogen annealing at 450℃ provides the best improvement of Ion/Ioffmin for (110)-GOI surfaces.

For The fabrication of GOI pMOSFETs was carried out by using Pt-Germanide source/drain (Pt-Ge S/D) structure which is known to provide negligibly small series resistance for Ge channels with acceptable thermal budget and the simply the back gate operating structure (Fig. 1(d).In order to examine the hole mobility anisotropy on (110)- and control (100)-oriented GOI pMOSFETs, the angle of the current flow direction of the present devices tilted from <100> direction was varied from 0° to 90° by every 22.5°.

It is found that, the hole mobility on (110)-oriented GOI surfaces increases with the channel direction tilted from <100> to <110> direction, in contrast to (100)-oriented conventional GOI or Si surfaces (Fig. 3). Also it also observed that the Eeff dependence of μeff is different between the (110)- and (100)-oriented GOI or Si surfaces. First, μeff of the (110)-oriented GOI surfaces (μeff-GOI(110)) increases with increasing Eeff from low to mid Eeff region , while μeff of the (100)-oriented GOI surfaces (μeff-GOI(100)) decreases with increasing Eeff. The inversion-layer mobility in low Eeff (or Ns) region is known to be subjected to Coulomb scattering. However, Dit values of (110)- and (100)-orientated GOI MOS interfaces, which can be regarded as one of the major Coulomb scattering centers, are 1.4×1013cm-2 and 0.8×1013cm-2, respectively, extracted from the S factors. This small difference of Dit is not enough to explain the large difference in the Eeff dependence of μeff-GOI(100) and μeff-GOI(110). Furthermore,μeff-GOI(110) keeps increasing with Eeff up to mid Eeff region, and weakly decreases towards high Eeff region. However, μeff-GOI(100) monotonically decreases with Eeff up to high Eeff region. However, in order to further discuss the scattering mechanism, the discrimination of the mobility components dominating by different scattering mechanisms is necessary.

In order to obtain physical insights into these phenomena, we have extracted phonon-limited mobility of (110)-oriented GOI pMOSFETs through the temperature dependence (Fig. 4). The extracted phonon mobilities on both (100)- and (110)-oriented GOI obey to the dependence of temperature to the power of -1.8, which is similar to the electron and hole mobilities in Si MOSFETs. This finding suggests the dominance of inter-valley phonon scattering. The phonon-limited mobility of (110)-oriented GOI pMOSFETs along <110> is 7.1 time, at maximum, as high as that of (100)-oriented Si pMOSFETs, while that of (100) GOI pMOSFETs is 3.4 times higher.

Figure 5 summarizes the mobility enhancement factor of (100)- and (110)-oriented GOI pMOSFETs, obtained in the present work, as a function of the channel direction angle tilted from <100> direction under different scattering mechanisms in comparison with simulation based results on (100)- and (110)-oriented Ge surfaces. Note that the channel direction dependence of mobility on (110)-GOI pMOSFETs under the each above condition can be confirmed. Furthermore, the origin of the direction dependence of the hole mobility is examined. As a result, the effective mass dependent on the channel direction of (110)-oriented GOI pMOSFETs can be a dominant factor for the observed mobility anisotropy.

Finally, we have carried out the formation of (110)-GOI layers by the local Ge condensation technique in order to accommodate higher amount of compressive strain to the channel as, the conventional Ge condensation technique provides negligible amount of residual strain (around 0.1%). During the local Ge condensation technique, only a localized area of Si/SiGe/SOI structure defined by window opening of a thick SiO2 layer capped with the whole sample surface is subjected for Ge condensation, while the other areas preserved in the initial state works effectively to preserve the strain in the localized GOI channel. To clarify impact of the dimensions (L; length and W; width) of the window size on accommodated compressively strain in localized GOI channels, we have systematically changed the window size from 1 um × 1 um to 700 um × 300 um and evaluated the average strain inside the each window by Raman spectroscopy as in Fig. 6. It is found that the localized GOI layers up to L=200 um over 1.5% of strain is preserved with no W dependence, while when the window size reaches to 700 um × 300 um the compressive strain relaxes to 0.2% level provided by the conventional Ge condensation technique. However, it can be confirmed that the window sizes up to 300 um × 100 um, which is compatible with our current device sizes provide over 1.4% of higher compressive strain, comparing with the conventional Ge condensation technique. These results suggest that the local Ge condensation technique is a practical solution to apply compressive strain to the (110)-oriented Ge pMOSFET along <110> channel direction, as a candidate for high performance MOSFET devices for future generations.

Fig. 1. Illustration of fabrication of GOI pMOSFETs

Fig.2 I(on)/I(Off)min Vs annealing conditions

Fig. 3 The relationship,μeff and θon GOI surfaces

Fig. 4 ,μph-T relationship on (110)-GOI surfaces

Fig. 5 μ<θ> /μ<100> Vs θ on GOI surfaces

Fig. 6 window size dependence on residual strain

審査要旨 要旨を表示する

本論文は、Study on Fabrication of (110)-oriented Ge-On-Insulator (GOI) MOSFETs by Ge Condensation Technique and their Electrical Characteristics (和訳:酸化濃縮法を用いた (110) 面Ge-On-Insulator (GOI)MOSFETの作製とその電気的特性に関する研究)と題し、GeをチャネルとしたMOSFETの高性能化と短チャネル化の観点で有望な、(110) 面を有する極薄膜のGe-On-Insulator (GOI) 構造の形成とその上でのMOSFETの電気特性および正孔輸送特性に関する実験的な研究の成果を纏めたもので、全文8章よりなり、英文で書かれている。

第1章は、序論であり、本研究の背景について議論すると共に本論文の構成について述べている。

第2章は、「Characteristics of ultrathin (110)-oriented GOI layers fabricated by Ge condensation technology」と題し、Si基板上の極薄膜GOI構造の作製技術である酸化濃縮法を用いて、(110)面をもつGOI構造を作製する方法と作製した構造の物理解析の結果について述べている。

第3章は、「Effects of Annealing on (110)-oriented GOI pMOSFETs」と題し、作製したGOI構造のリーク電流低減に有効な手段として、本研究で初めて見出した重水素アニールの手法とリーク電流の抑制効果について述べている。

第4章は、「Fabrication of Pt-Ge Source Drain GOI pMOSFETs」と題し、(110)面を有するGOI構造上に作製したMOSFETの作製プロセスについて述べている。

第5章は、「Electrical characteristics of GOI pMOSFETs」と題し、本研究で初めて動作に成功した、(110)面GOI pチャネルMOSFETの素子特性を示している。ここで、観測された閾値シフトの起源や移動度抽出法の妥当性に関して、デバイスシミュレーションやホール測定による検討を加え、GOI層中に高濃度の正孔が存在することを見出すと共に、(100) 面Si pMOSFETの約3倍、(100) 面GOI pMOSFETの2.3倍の高い正孔移動度が得られることを実験的に示している。

第6章は、「Hole mobility dependence on channel direction, effective field and temperature on (110)- oriented GOI pMOSFETs」と題し、これまでそのキャリア輸送特性が全く明らかにされていない、(110)面GOI MOSFETの正孔移動度に関し、そのチャネル方向依存性を評価して、<110>方向で正孔移動度が最大になることを示している。更に、移動度の温度依存性から、散乱機構の分離を行って、フォノン散乱により決まる移動度の抽出に成功し、(100) 面Si pMOSFETの正孔フォノン移動度の7.1倍の移動度向上が得られることを示している。更にこの解析により、正孔移動度のチャネル方向依存性と表面正孔濃度依存性は、有効質量のチャネル方向依存性及び表面キャリア濃度依存性によってもたらされていることを明らかにしている。

第7章は、「Fabrication of compressive strained (110)-oriented GOI layers by the local Ge condensation technique and their characteristics」と題し、(110) GOIチャネルの正孔移動度を更に向上させることが期待できる圧縮ひずみの印加を目指して、局所的に酸化濃縮を行なうことによりGOI構造を形成し、GOI中のひずみ量の評価を定量的に行って、数100ミクロン角程度のGOI領域のサイズにおいても、1.4% 程度の圧縮ひずみの導入が可能であることを明らかにしている。

第8章は、結論である。

以上要するに本論文は、将来の高性能MOSFETのチャネル材料として期待されているGeを、Si基板の上の絶縁膜上に極薄膜で形成するGOIチャネルおいて、極めて高い正孔移動度が期待できる(110) 面を有するGOI構造を、酸化濃縮法を用いて実現し、このチャネルを用いたpMOSFETの動作実証を初めて行い、高い正孔移動度特性を実証すると共に、移動度のチャネル方位、温度、表面正孔濃度に対する依存性とその物理的起源を調べることにより、本構造のMOSFETへの適用の有効性を実験的に明らかにしたものであり、電子工学上、寄与するところが少なくない。

よって本論文は博士(工学)の学位請求論文として合格と認められる。

UTokyo Repositoryリンク